1) Cho duong thang Δ : \(\left\{{}\begin{matrix}x=1+t\\y=2-t\\z=1+2t\end{matrix}\right.\)
Viet phuong trinh duong thang d di qua A (1;1;1) cat va vuong goc voi Δ
1) Cho duong thang Δ : \(\left\{{}\begin{matrix}x=1+t\\y=2-t\\z=1+2t\end{matrix}\right.\)
Viet phuong trinh duong thang d di qua A (1;1;1) cat va vuong goc voi Δ
\(\overrightarrow{u}=\left(1;-1;2\right)\) ; A(1;1;1) \(\Rightarrow\left\{{}\begin{matrix}1+t\\1-t\\1+2t\end{matrix}\right.\)
Cho đường thẳng Δ có phương trình \(\left\{{}\begin{matrix}x=5t\\y=-1+6t\\z=2\end{matrix}\right.\) và mặt phẳng 2x-y-4z+3=0. Hình chiếu vuông góc d' của Δ lên mặt phẳng (P) theo phương d: \(\dfrac{x-1}{2}=\dfrac{y}{4}=\dfrac{z+3}{-1}\)
Phương trình đường thẳng D đi qua điểm A (1;2;3) B (-1;0;1) là :
Tìm toạ độ điểm H là hình chiếu của M lên đường thẳng hoặc mặt phẳng có M(-3,7,-4) lên (Oxy),(Oxz),(Oyz)
Giúp mình với. Mình đang cần gấp ạ
Phương trình mặt phẳng (P) qua A và vuông góc \(\overrightarrow{a}\) có dạng:
\(4\left(x-1\right)+2\left(y-1\right)-1\left(z+2\right)=0\)
\(\Leftrightarrow4x+2y-z-8=0\)
Gọi B là giao điểm (P) và \(\Delta\Rightarrow\) tọa độ B thỏa mãn:
\(4\left(2-t\right)+2\left(3+2t\right)-\left(1+3t\right)-8=0\) \(\Rightarrow t=\dfrac{5}{3}\) \(\Rightarrow B\left(\dfrac{1}{3};\dfrac{19}{3};6\right)\)
\(\Rightarrow\overrightarrow{AB}=\left(-\dfrac{2}{3};\dfrac{16}{3};8\right)=\dfrac{2}{3}\left(-1;8;12\right)\)
Phương trình d: \(\left\{{}\begin{matrix}x=1-t\\y=1+8t\\z=-2+12t\end{matrix}\right.\)
Trong không gian với hệ tọa độ oxyz, cho mặt cầu (S): x2+y2+z2-2x-4y-4z+5=0. Mặt cầu (s) cắt trục ox tại hai điểm có tọa độ là
A.(1,0,0),(3,0,0)
B.(0,0,0),(2,0,0)
C.(1,0,0),(-1,0,0)
D.(2,0,0),(4,0,0)
Trong không gian Oxyz, viết phương trình đường thẳng :
a) Qua điểm A (1;2-1) và vuông góc với mặt phẳng (P) : 3x - 2y + 2z + 1 = 0
b) Qua điểm A(1;-2;3) và song song với hai mặt phẳng (P) : x + y + z + 1 = 0, (P') : x - y + z - 2 = 0
c) Qua điểm M(-1;1;3) và vuông góc với hai đường thẳng Δ : x-1/3 = y+3/2 = z-1/1 , Δ' : x+1/1 = y/3 = z/-2
a. Mặt phẳng (P) có (3;-2;2) là 1 vtpt nên d nhận (3;-2;2) là 1 vtcp
Phương trình tham số d: \(\left\{{}\begin{matrix}x=1+3t\\y=2-2t\\z=-1+2t\end{matrix}\right.\)
b. \(\overrightarrow{n_{\left(P\right)}}=\left(1;1;1\right)\) ; \(\overrightarrow{n_{\left(P'\right)}}=\left(1;-1;1\right)\)
\(\left[\overrightarrow{n_{\left(P\right)}};\overrightarrow{n_{\left(P'\right)}}\right]=\left(2;0;-2\right)=2\left(1;0;-1\right)\)
\(\Rightarrow\) d nhận (1;0;-1) là 1 vtcp nên pt có dạng: \(\left\{{}\begin{matrix}x=1+t\\y=-2\\z=3-t\end{matrix}\right.\)
c. \(\overrightarrow{u_{\Delta}}=\left(3;2;1\right)\) ; \(\overrightarrow{u_{\Delta'}}=\left(1;3;-2\right)\)
\(\left[\overrightarrow{u_{\Delta}};\overrightarrow{u_{\Delta'}}\right]=\left(-7;7;7\right)=7\left(-1;1;1\right)\)
Đường thẳng d nhận (-1;1;1) là 1 vtcp nên pt có dạng: \(\left\{{}\begin{matrix}x=-1-t\\y=1+t\\z=3+t\end{matrix}\right.\)
Trong không gian Oxyz, viết phương trình đường thẳng :
a) Qua hai điểm M (1;0;1) và N (3;2;-1)
b) Qua điểm A (0;-1;3) và song song với đường thẳng chứa hai điểm B (1;0;1) , C (-1;1;2)
a. \(\overrightarrow{MN}=\left(2;2-2\right)=2\left(1;1;-1\right)\)
Phương trình tham số MN: \(\left\{{}\begin{matrix}x=1+t\\y=t\\z=1-t\end{matrix}\right.\)
b. \(\overrightarrow{BC}=\left(2;1;1\right)\Rightarrow d\) nhận (2;1;1) là 1 vtpt
Phương trình d: \(\left\{{}\begin{matrix}x=2t\\y=-1+t\\z=3+t\end{matrix}\right.\)
Phương trình tham số:
\(\left\{{}\begin{matrix}y=-2+t\\z=5+4t\end{matrix}\right.\)