Cho hai đường thẳng :
\(d:\left\{{}\begin{matrix}x=1-t\\y=2+2t\\z=3t\end{matrix}\right.\) và \(d':\left\{{}\begin{matrix}x=1+t'\\y=3-2t'\\z=1\end{matrix}\right.\)
Chứng minh d và d' chéo nhau ?
Cho hai đường thẳng :
\(d:\left\{{}\begin{matrix}x=1-t\\y=2+2t\\z=3t\end{matrix}\right.\) và \(d':\left\{{}\begin{matrix}x=1+t'\\y=3-2t'\\z=1\end{matrix}\right.\)
Chứng minh d và d' chéo nhau ?
Giải bài toán sau đây bằng phương pháp tọa độ :
Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng 1. Tính khoảng cách từ đỉnh A đến các mặt phẳng (A'BD) và (B'D'C) ?
Chọn hệ trục tọa độ Oxyz sao cho A)0 ; 0 ; 0), B(1 ; 0 ; 0), D(0 ; 1; 0), A'(0 ; 0 ; 1)
Khi đó
B'(1 ; 0 ; 1), D'(0 ; 1 ; 1), C(1 ; 1 ; 0). Phương trình mặt phẳng (A'BD) có dạng:
x + y + z - 1 = 0. (1)
Ta tìm được phương trình mặt phẳng (B'D'C):
Vectơ: (0 ; -1 ; 1) ; (-1 ; 0 ; 1).
Mặt phẳng (B'D'C) qua điểm C và nhận = (-1 ; -1 ; -1 ) làm vectơ pháp tuyến. Phương trình mặt phẳng (B'D'C) có dạng:
x + y + z - 2 = 0 (2)
Ta có
Tìm số giao điểm của đường thẳng d với mặt phẳng \(\left(\alpha\right)\) trong các trường hợp sau :
a) \(d:\left\{{}\begin{matrix}x=12+4t\\y=9+3t\\z=1+t\end{matrix}\right.\) và \(\left(\alpha\right):3x+5y-z-2=0\)
b) \(d:\left\{{}\begin{matrix}x=1+t\\y=2-t\\z=1+2t\end{matrix}\right.\) và \(\left(\alpha\right):x+3y+z+1=0\)
c) \(d:\left\{{}\begin{matrix}x=1+t\\y=1+2t\\z=2-3t\end{matrix}\right.\) và \(\left(\alpha\right):x+y+z-4=0\)
a) Thay các tọa độ x ; y ; z trong phương trình tham số của d vào phương trình (α) ta có:
3(12 + 4t) +5(9 + 3t) - (1 + t) = 0
⇔ 26t + 78 = 0 ⇔ t = -3.
Tức là d ∩ (α) = M(0 ; 0 ; -2).
Trong trường hợp này d cắt (α) tại điểm M.
b) Thay các tọa độ x ; y ; z trong phương trình tham số của d vào phương trình (α) ta có:
(1 + t) + 3.(2 - t) + (1 + 2t) + 1 = 0
⇔ 0.t + t = 9, phương trình vô nghiệm.
Chứng tỏ d và (α) không cắt nhau., ta có d // (α).
c) Thay các tọa độ x ; y ; z trong phương trình tham số của d vào phương trình (α) ta có:
(1 + 1) + (1+ 2t) + (2 - 3t) - 4 = 0
⇔ 0t + 0 = 0,phương trình này có vô số nghiệm, chứng tỏ d ⊂ (α) .
Cho điểm \(M\left(1;4;2\right)\) và mặt phẳng \(\left(\alpha\right):x+y+z-1=0\) :
a) Tìm tọa độ điểm H là hình chiếu vuông góc của điểm M trên mặt phẳng \(\left(\alpha\right)\)
b) Tìm tọa độ điểm M' đối xứng với M qua mặt phẳng \(\left(\alpha\right)\)
c) Tính khoảng cách từ điểm M đến mặt phẳng \(\left(\alpha\right)\)
Tính khoảng cách giữa đường thẳng \(\Delta:\left\{{}\begin{matrix}x=-3+2t\\y=-1+3t\\z=-1+2t\end{matrix}\right.\) và mặt phẳng \(\left(\alpha\right):2x-2y+z+3=0\) ?
Tìm a để hai đường thẳng sau đây cắt nhau :
\(d:\left\{{}\begin{matrix}x=1+at\\y=t\\z=-1+2t\end{matrix}\right.\) và \(d':\left\{{}\begin{matrix}x=1-t'\\y=2+2t'\\z=3-t'\end{matrix}\right.\)
Xét hệ
Hai đường thẳng d và d' cắt nhau khi và chỉ khi hệ có nghiệm duy nhất.
Nhân hai về của phương trình (3) với 2 rồi cộng vế với vế vào phương trình (2), ta có t = 2;
s = 0. Thay vào phương trình (1) ta có 1 + 2a = 1 => a =0.
Vậy a = 0 thì d và d' cắt nhau.
Viết phương trình tham số của đường thẳng là hình chiếu vuông góc của đường thẳng \(d:\left\{{}\begin{matrix}x=2+t\\y=-3+2t\\z=1+3t\end{matrix}\right.\) lần lượt trên các mặt phẳng sau :
a) (Oxy)
b) (Oyz)
a) Xét mặt phẳng (P) đi qua d và (P) ⊥ (Oxy), khi đó ∆ = (P) ∩ (Oxy) chính là hình chiếu vuông góc của d lên mặt phẳng (Oxy).
Phương trình mặt phẳng (Oxy) có dạng: z = 0 ; vectơ (0 ; 0 ;1) là vectơ pháp tuyến của (Oxy), khi đó và ( 1 ; 2 ; 3) là cặp vectơ chỉ phương của mặt phẳng (P).
= (2 ; -1 ; 0) là vectơ pháp tuyến của (P).
Phương trình mặt phẳng (P) có dạng:
2(x - 2) - (y + 3) +0.(z - 1) = 0
hay 2x - y - 7 = 0.
Đường thẳng hình chiếu ∆ thỏa mãn hệ:
Điểm M0( 4 ; 1 ; 0) ∈ ∆ ; vectơ chỉ phương của ∆ vuông góc với và vuông góc với , vậy có thể lấy = (1 ; 2 ; 0).
Phương trình tham số của hình chiếu ∆ có dạng:
.
Chú ý :
Ta có thể giải bài toán này bằng cách sau:
Lấy hai điểm trên d và tìm hình chiếu vuông góc của nó trên mặt phẳng (Oxy). Đường thẳng đi qua hai điểm đó chính là hình chiếu cần tìm.
Chẳng hạn lấy M1( 2 ; 3 ; -1) ∈ d và M2( 0 ; -7 ; -5) ∈ d, hình chiếu vuông góc của
M1 trên (Oxy) là N1 (2 ; -3 ; 0), hình chiếu vuông góc của M2 trên (Oxy) là N2(0 ; -7 ; 0).
Đườn thẳng ∆ qua N1, N2 chính là hình chiếu vuông góc của d lên (Oxy).
Ta có : (-2 ; -4 ; 0) // (1 ; 2 ; 0).
Phương trình tham số của ∆ có dạng:
.
b) Tương tự phần a), mặt phẳng (Oxy) có phương trình x = 0.
lấy M1( 2 ; 3 ; -1) ∈ d và M2( 0 ; -7 ; -5) ∈ d, hình chiếu vuông góc của
M1 trên (Oxy) là M'1 (0 ; -3 ; 1), hình chiếu vuông góc của M2 trên (Oyz) là chính nó.
Đườn thẳng ∆ qua M'1, M2 chính là hình chiếu vuông góc của d lên (Oyz).
Ta có: (0 ; -4 ; -6) // (0 ; 2 ; 3).
Phương trình M'1M2 có dạng:
.
Viết phương trình tham số của đường thẳng d trong mỗi trường hợp sau :
a) d đi qua điểm \(M\left(5;4;1\right)\) và có vectơ chỉ phương \(\overrightarrow{a}=\left(2;-3;1\right)\)
b) d đi qua điểm \(A\left(2;-1;3\right)\) và vuông góc với mặt phẳng \(\left(\alpha\right)\) có phương trình \(x+y-z+5=0\)
c) d đi qua điểm \(B\left(2;0;-3\right)\) và song song với đường thẳng \(\Delta:\left\{{}\begin{matrix}x=1+2t\\y=-3+3t\\z=4t\end{matrix}\right.\)
d) d đi qua 2 điểm \(P\left(1;2;3\right)\) và \(Q\left(5;4;4\right)\)
a) Phương trình đường thẳng d có dạng: , với t ∈ R.
b) Đường thẳng d vuông góc với mặt phẳng (α): x + y - z + 5 = 0 nên có vectơ chỉ phương
(1 ; 1 ; -1) vì là vectơ pháp tuyến của (α).
Do vậy phương trình tham số của d có dạng:
c) Vectơ (2 ; 3 ; 4) là vectơ chỉ phương của ∆. Vì d // ∆ nên cùng là vectơ chỉ phương của d. Phương trình tham số của d có dạng:
d) Đường thẳng d đi qua hai điểm P(1 ; 2 ; 3) và Q(5 ; 4 ; 4) có vectơ chỉ phương
(4 ; 2 ; -1) nên phương trình tham số có dạng:
Xét vị trí tương đối của các cặp đường thẳng d và d' cho bởi các phương trình sau :
a) \(d:\left\{{}\begin{matrix}x=-3+2t\\y=-2+3t\\z=6+4t\end{matrix}\right.\) và \(d':\left\{{}\begin{matrix}x=5+t'\\y=-1-4t'\\z=20+t'\end{matrix}\right.\)
b) \(d:\left\{{}\begin{matrix}x=1+t\\y=2+t\\z=3-t\end{matrix}\right.\) và \(d':\left\{{}\begin{matrix}x=1+2t'\\y=-1+2t'\\z=2-2t'\end{matrix}\right.\)
a) Đường thẳng d đi qua M1( -3 ; -2 ; 6) và có vectơ chỉ phương (2 ; 3 ; 4).
Đường thẳng d' đi qua M2( 5 ; -1 ; 20) và có vectơ chỉ phương (1 ; -4 ; 1).
Ta có = (19 ; 2 ; -11) ; = (8 ; 1 ; 14)
và = (19.8 + 2 - 11.4) = 0
nên d và d' cắt nhau.
Nhận xét : Ta nhận thấy , không cùng phương nên d và d' chỉ có thể cắt nhau hoặc chéo nhau.
Xét hệ phương trình:
Từ (1) với (3), trừ vế với vế ta có 2t = 6 => t = -3, thay vào (1) có t' = -2, từ đó d và d' có điểm chung duy nhất M(3 ; 7 ; 18). Do đó d và d' cắt nhau.
b) Ta có : (1 ; 1 ; -1) là vectơ chỉ phương của d và (2 ; 2 ; -2) là vectơ chỉ phương của d' .
Ta thấy và cùng phương nên d và d' chỉ có thể song song hoặc trùng nhau.
Lấy điểm M(1 ; 2 ; 3) ∈ d ta thấy M d' nên d và d' song song.
Cho điểm \(A\left(1;0;0\right)\) và đường thẳng \(\Delta:\left\{{}\begin{matrix}x=2+t\\y=1+2t\\z=t\end{matrix}\right.\)
a) Tìm tọa độ điểm H là hình chiếu vuông góc của điểm A trên đường thẳng \(\Delta\) ?
b) Tìm tọa độ điểm A' đối xứng với A qua đường thẳng \(\Delta\) ?
a) Đường thẳng ∆ có vectơ chỉ phương →uu→(1 ; 2 ; 1). H ∈ ∆ nên H(2 + t ; 1 + 2t ; t).
Điểm H ∈ ∆ là hình chiếu vuông góc của A lên ∆ khi và chỉ khi −−→AHAH→ ⊥ →uu→.
Ta có −−→AHAH→(1+t ; 1 + 2t ; t) nên:
−−→AHAH→ ⊥ →uu→ ⇔ →u.−−→AHu→.AH→ = 0.
⇔ 1 + t + 2(1 + 2t) + t = 0
⇔ 6t + 3 = 0 ⇔ t = −12−12.
⇔ H(32;0;−12)H(32;0;−12).
b) Gọi A' là điểm đối xứng của A qua ∆ và H là hình chiếu vuông góc của A lên ∆ thì H là trung điểm của AA'; vì vậy tọa độ của H là trung bình cộng các tọa độ tương ứng của A và A'.
Gọi A'(x ; y ; z) ta có:
x+12=32x+12=32 => x = 2; y = 0; z = -1.
Vậy A'(2 ; 0 ; -1).