Từ các số 5, 0, 1, 3, viết các số tự nhiên có ba chữ số khác nhau thỏa mãn điều kiện:
a) Các số đó chia hết cho 5;
b) Các số đó chia hết cho 3.
Từ các số 5, 0, 1, 3, viết các số tự nhiên có ba chữ số khác nhau thỏa mãn điều kiện:
a) Các số đó chia hết cho 5;
b) Các số đó chia hết cho 3.
Hãy phân tích các số A, B ra thừa số nguyên tố:
A = \(4^2.6^3\)
B =\(9^2.15^2\)
A= \(4^2.6^3= 4.4.6.6.6\)
\(=(2^2).(2^2).(2.3).(2.3).(2.3)\)
\(=2^{2+2+1+1+1}.3^{1+1+1}=2^7.3^3\)
B =\(9^2.15^2\)
\(=9.9.15.15\)
\(=3^2.3^2.3.5.3.5\)
\(=3^{2+2+1+1}.5^{1+1}\)
=\(3^6.5^2\)
Trả lời bởi Hà Quang MinhTìm số tự nhiên x không vượt quá 22 sao cho:
a) 100 - x chia hết cho 4
b) 18 + 90 + x chia hết cho 9
a) 100 - x chia hết cho 4. Mà 100 chia hết cho 4 nên x chia hết cho 4
Do đó x là bội của 4 và x là số tự nhiên
Ta có: B(4) = {0; 4; 8; 12; 16; 20; 24;…}
Vì x không vượt quá 22 nên x ∈ {0; 4; 8; 12; 16; 20}
Vậy x ∈ {0; 4; 8; 12; 16; 20}.
b) 18 + 90 + x chia hết cho 9. Mà 18 và 90 chia hết cho 9 nên x chia hết cho 9
Do đó x là bội của 9 và x là số tự nhiên
Ta có: B(9) = {0; 9; 18; 27;…}
Vì x không vượt quá 22 nên x ∈ {0; 9; 18}
Vậy x ∈ {0; 9; 18}.
Trả lời bởi Hà Quang MinhLớp 6B có 40 học sinh. Để thực hiện dự án học tập nhỏ, cô giáo muốn chia lớp thành các nhóm có số người như nhau, mỗi nhóm có nhiều hơn 3 người. Hỏi mỗi nhóm có thể có bao nhiêu người?
Gọi số nhóm là x (nhóm),( x ∈ N; 3 < x < 40)
Vì cô giáo muốn chia lớp có 40 học sinh thành nhiều nhóm có số người như nhau nên
40 ⁝ x hay X ∈ Ư(40)
Ư(40) = {1; 2; 4; 5; 8; 10; 20; 40}
Ta có bảng sau:
Số nhóm | \(1\) | \(2\) | \(4\) | \(5\) | \(8\) | \(10\) | \(20\) | \(40\) |
Số người mỗi nhóm | \(40\) | \(20\) | \(10\) | \(8\) | \(5\) | \(4\) | \(2\) | \(1\) |
Vì mỗi nhóm có nhiều hơn 3 người nên mỗi nhóm có thể có 4 người; 5 người; 8 người; 10 người hoặc 20 người.
Vậy mỗi nhóm có thể có 4 người; 5 người; 8 người; 10 người hoặc 20 người.
Trả lời bởi Hà Quang MinhHai số nguyên tố được gọi là sinh đôi nếu chúng hơn kém nhau hai đơn vị. Ví dụ 17 và 19 là hai số nguyên tố sinh đôi. Em hãy liệt kê các cặp số nguyên tố sinh đôi nhỏ hơn 40.
Các cặp số nguyên tố sinh đôi nhỏ hơn 40 là: (3;5); (5;7); (11;13); (17;19); (29;31).
Trả lời bởi Hà Quang Minh
a) Gọi số tự nhiên cần tìm có ba chữ số khác nhau là
\(\overline {abc} \)( \(a \ne 0; a,b,c \in N; a,b,c \le 9; a,b,c\) khác nhau)
Vì số đó chia hết cho 5 nên chữ số tận cùng là 0 hoặc 5. Do đó c = 0 hoặc c = 5.
+) Với c = 0, ta có bảng chữ số a, b khác nhau và khác 0 thỏa mãn là:
a
1
5
3
5
1
3
b
5
1
5
3
3
1
Do đó ta thu được các số: 150; 510; 350; 530; 130; 310.
+) Với c = 5, \(a \ne 0\) nên a = 1 hoặc 3, ta có bảng chữ số a, b khác nhau thỏa mãn là:
a
1
3
1
3
b
0
0
3
1
Do đó ta thu được các số: 105; 305; 135; 315
Vậy các số tự nhiên có ba chữ số khác nhau chia hết cho 5 được viết từ các chữ số đã cho: 130; 135; 105; 150; 310; 315; 350; 305; 510; 530.
b) Gọi số tự nhiên cần tìm có ba chữ số khác nhau là
\(\overline {abc} \)( \(a \ne 0; a,b,c \in N; a,b,c \le 9; a,b,c\) khác nhau)
Vì số đó chia hết cho 3 nên tổng các chữ số của nó phải chia hết cho 3 hay (a + b + c) chia hết cho 3.
Ta thấy bộ 3 chữ số khác nhau có tổng chia hết cho 3 là: (5, 0, 1); (5, 1, 3) vì (5 + 0 + 1 = 6 chia hết cho 3 và 5 + 1 + 3 = 9 chia hết cho 3)
+) Khi a,b,c gồm 3 chữ số 5, 0, 1 thì ta có các số cần tìm là: 105; 150; 510; 501
+) Khi a,b,c gồm 3 chữ số 5, 1, 3 thì ta có các số cần tìm là: 135; 153; 351; 315; 513; 531
Vậy các số tự nhiên có ba chữ số khác nhau chia hết cho 3 được viết từ các chữ số đã cho: 135; 153; 351; 315; 513; 531; 105; 150; 510; 501.
Trả lời bởi Hà Quang Minh