Bài 1: Sự đồng biến và nghịch biến của hàm số

SK
Hướng dẫn giải Thảo luận (2)
SK
Hướng dẫn giải Thảo luận (1)
SK
Hướng dẫn giải Thảo luận (1)
SK
Hướng dẫn giải Thảo luận (1)
SK
Hướng dẫn giải Thảo luận (2)
SK
Hướng dẫn giải Thảo luận (1)
SK
Hướng dẫn giải Thảo luận (1)

lời giải

theo phương pháp chia nhỏ xét

\(f\left(x\right)=x^5-x^2-2x-1\)

\(f'\left(x\right)=5x^4-2x-2\)

\(f''\left(x\right)=20x^3-2\)

1) xét f'(x)

\(f''\left(x\right)=0\Rightarrow x=\sqrt[3]{\dfrac{1}{10}}\Rightarrow f'\left(x\right)\)

xét hàm f'(x) nếu có chỉ có 2 nghiệm trái dấu

f''(x) \(\left\{{}\begin{matrix}f''\left(x\right)< 0\\x\le0\end{matrix}\right.\)

Vậy điểm cực đại f(x) có hoành độ xcd<0

\(\left\{{}\begin{matrix}f'\left(-1\right)=5>0\\f'\left(0\right)=-2< 0\\f'\left(1\right)=1>0\end{matrix}\right.\) vậy f'(x) có hai nghiệm \(\left[{}\begin{matrix}x_{cđ}=\left(-1,0\right)\\x_{ct}=\left(0,1\right)\end{matrix}\right.\)

Ta lại có

\(f\left(x\right)=\dfrac{x}{5}.f'\left(x\right)-\dfrac{1}{5}\left(3x^2+8x+5\right)\)

\(\Rightarrow f\left(x_{cd}\right)=-\dfrac{1}{5}\left(x^2+8x-5\right)\)

{a-b+c=0} \(\Rightarrow f\left(x_{cd}\right)\le0..khi..\left[{}\begin{matrix}x\le-\dfrac{5}{3}\\x\ge-1\end{matrix}\right.\)

Khi \(-1< x< 0\Rightarrow f\left(cđ\right)< 0\)

\(\Rightarrow f\left(x\right)\) có nghiệm duy nhất --> dpcm

p/s:

nếu làm tổng thể \(f\left(x_{xd}\right).f\left(x_{ct}\right)>0\) ra bậc bốn rất khó khăn trong việc giải BPT

Trả lời bởi ngonhuminh
SK
Hướng dẫn giải Thảo luận (1)
SK
Hướng dẫn giải Thảo luận (1)

Xét hàm số vế trái \(f\left(x\right)=x^3-3x+c\)

Ta có: \(f'\left(x\right)=3x^2-3=3\left(x^2-1\right)\)

Hàm số liên tục trên toàn trục số và trên khoảng (0;1) thì \(f'\left(x\right)< 0\) nên hàm số nghịch biến trên [0;1]. Vậy phương trình f(x)=0 không thể có hai nghiệm trên [0; 1].

Trả lời bởi Giáo viên Toán
SK
Hướng dẫn giải Thảo luận (2)

1. a) Tập xác định : D = R; y' = 3 - 2x => y' = 0 ⇔ x = \(\dfrac{3}{2}\).

Bảng biến thiên :

Hàm số đồng biến trên khoảng (-∞; \(\dfrac{3}{2}\)); nghịch biến trên khoảng ( \(\dfrac{3}{2}\); +∞ ).

b) Tập xác định D = R;
y'= x2 + 6x - 7 => y' = 0 ⇔ x = 1, x = -7.

Bảng biến thiên :

Hàm số đồng biến trên các khoảng (- ; -7), (1 ; +) ; nghịch biến trên các khoảng (-7 ; 1).

c) Tập xác định : D = R.

y' = 4x3 - 4x = 4x(x2 - 1) => y' = 0 ⇔ x = -1, x = 0, x = 1.

Bảng biến thiên: tự vẽ.

Hàm số đồng biến trên các khoảng (-1 ; 0), (1 ; +) ; nghịch biến trên các khoảng (- ; -1), (0 ; 1).

d) Tập xác định : D = R. y' = -3x2 + 2x => y' = 0 ⇔ x = 0, x = \(\dfrac{2}{3}\).

Bảng biến thiên :

Hàm số đồng biến trên khoảng ( 0 ; \(\dfrac{2}{3}\) ) ; nghịch biến trên các khoảng (- ; 0), ( \(\dfrac{2}{3}\); +).

Trả lời bởi qwerty