Bài 1: Sự đồng biến và nghịch biến của hàm số

SK

Chứng minh phương trình :

                 \(x^5-x^2-2x-1=0\)

có nghiệm duy nhất 

H24
21 tháng 4 2017 lúc 15:36

lời giải

theo phương pháp chia nhỏ xét

\(f\left(x\right)=x^5-x^2-2x-1\)

\(f'\left(x\right)=5x^4-2x-2\)

\(f''\left(x\right)=20x^3-2\)

1) xét f'(x)

\(f''\left(x\right)=0\Rightarrow x=\sqrt[3]{\dfrac{1}{10}}\Rightarrow f'\left(x\right)\)

xét hàm f'(x) nếu có chỉ có 2 nghiệm trái dấu

f''(x) \(\left\{{}\begin{matrix}f''\left(x\right)< 0\\x\le0\end{matrix}\right.\)

Vậy điểm cực đại f(x) có hoành độ xcd<0

\(\left\{{}\begin{matrix}f'\left(-1\right)=5>0\\f'\left(0\right)=-2< 0\\f'\left(1\right)=1>0\end{matrix}\right.\) vậy f'(x) có hai nghiệm \(\left[{}\begin{matrix}x_{cđ}=\left(-1,0\right)\\x_{ct}=\left(0,1\right)\end{matrix}\right.\)

Ta lại có

\(f\left(x\right)=\dfrac{x}{5}.f'\left(x\right)-\dfrac{1}{5}\left(3x^2+8x+5\right)\)

\(\Rightarrow f\left(x_{cd}\right)=-\dfrac{1}{5}\left(x^2+8x-5\right)\)

{a-b+c=0} \(\Rightarrow f\left(x_{cd}\right)\le0..khi..\left[{}\begin{matrix}x\le-\dfrac{5}{3}\\x\ge-1\end{matrix}\right.\)

Khi \(-1< x< 0\Rightarrow f\left(cđ\right)< 0\)

\(\Rightarrow f\left(x\right)\) có nghiệm duy nhất --> dpcm

p/s:

nếu làm tổng thể \(f\left(x_{xd}\right).f\left(x_{ct}\right)>0\) ra bậc bốn rất khó khăn trong việc giải BPT

Bình luận (1)