H24

\(xyz>0;x+y+z=\dfrac{1}{2}\). tìm max \(P=\dfrac{x}{\sqrt{x+2yx}}+\dfrac{y}{\sqrt{y+2zx}}+\dfrac{z}{\sqrt{z+2xy}}\)

NL
7 tháng 1 lúc 21:56

\(P=\dfrac{x}{\sqrt{2.\dfrac{1}{2}x+2yz}}+\dfrac{y}{\sqrt{2.\dfrac{1}{2}y+zx}}+\dfrac{z}{\sqrt{2.\dfrac{1}{2}z+xy}}\)

\(=\dfrac{x}{\sqrt{2x\left(x+y+z\right)+yz}}+\dfrac{y}{\sqrt{2y\left(x+y+z\right)+2zx}}+\dfrac{z}{\sqrt{2z\left(x+y+z\right)+2xy}}\)

\(=\dfrac{x}{\sqrt{2\left(x+y\right)\left(x+z\right)}}+\dfrac{y}{\sqrt{2\left(x+y\right)\left(y+z\right)}}+\dfrac{z}{\sqrt{2\left(x+z\right)\left(y+z\right)}}\)

\(=\dfrac{1}{2\sqrt{2}}.2\sqrt{\dfrac{x}{x+y}}.\sqrt{\dfrac{x}{x+z}}+\dfrac{1}{2\sqrt{2}}.2\sqrt{\dfrac{y}{x+y}}.\sqrt{\dfrac{y}{y+z}}+\dfrac{1}{2\sqrt{2}}.2\sqrt{\dfrac{z}{x+z}}.\sqrt{\dfrac{z}{y+z}}\)

\(\le\dfrac{1}{2\sqrt{2}}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}+\dfrac{y}{x+y}+\dfrac{y}{y+z}+\dfrac{z}{x+z}+\dfrac{z}{y+z}\right)\)

\(=\dfrac{3}{2\sqrt{2}}\)

Dấu "=" xảy ra tại  \(x=y=z=\dfrac{1}{6}\)

Bình luận (0)