TN

x,y,z là các số thực dương thỏa mãn xy+yz+zx=2024. Tìm min \(P=\dfrac{\sqrt{x^2+2024}+\sqrt{y^2+2024}+\sqrt{z^2+2024}}{\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}\)

NL
25 tháng 1 2024 lúc 21:25

\(\sqrt{x^2+2024}=\sqrt{x^2+xy+yz+zx}=\sqrt{\left(x+y\right)\left(z+x\right)}\ge\sqrt{\left(\sqrt{xz}+\sqrt{xy}\right)^2}=\sqrt{xy}+\sqrt{xz}\)

Tương tự: \(\sqrt{y^2+2024}\ge\sqrt{xy}+\sqrt{yz}\)

\(\sqrt{z^2+2024}\ge\sqrt{xz}+\sqrt{yz}\)

Cộng vế:

\(P\ge\dfrac{2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)}{\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}=2\)

Dấu "=" xảy ra khi \(x=y=z=\dfrac{2024}{3}\)

Bình luận (0)

Các câu hỏi tương tự
BZ
Xem chi tiết
FS
Xem chi tiết
HK
Xem chi tiết
MT
Xem chi tiết
TL
Xem chi tiết
HA
Xem chi tiết
LV
Xem chi tiết
H24
Xem chi tiết
CN
Xem chi tiết