Giải hệ phương trình\(\left\{{}\begin{matrix}\left(x+1\right)\left(x^2+1\right)=y^3+1\\\left(y+1\right)\left(y^2+1\right)=z^3+1\\\left(z+1\right)\left(z^2+1\right)=x^3+1\end{matrix}\right.\)
Giải hệ phương trình:\(\left\{{}\begin{matrix}x^3+xy^2+\left(x^2+y^2-4\right)\left(y+2\right)=0\\x^2+2y^2+xy+2x-4=0\end{matrix}\right.\)
Giải hệ phương trình:
a) \(\left\{{}\begin{matrix}y\left(x+y+1\right)=3\\\left(x+y\right)^2-\dfrac{4}{y^2}=0\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x-\dfrac{1}{x}=y-\dfrac{1}{y}\\2y=x^3+1\end{matrix}\right.\)
Em đang cần gấp ạ !!! Cảm ơn mọi người nhiều ạ !!!
Giải các hệ phương trình
\(\left\{{}\begin{matrix}\frac{1}{x+1}+\frac{1}{y}=\frac{1}{3}\\\frac{1}{\left(x+1\right)^2}-\frac{1}{y^2}=\frac{1}{4}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\left(x+m\right)^2-y^2+y\left(x+m\right)=11\\x+2y=7-m\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\left(x+a\right)^2+2\left(y-a\right)^2-\left(x+a\right)\left(y-a\right)=2\\x+y=2\end{matrix}\right.\)
giải hpt \(\left\{{}\begin{matrix}\left(x-1\right)^2+\left(y-3\right)^2=1\\\left(x-1\right)\left(y-3\right)+3=x+y\end{matrix}\right.\)
Giải hệ phương trình sau:\(\left\{{}\begin{matrix}\left(x-y+3\right)\sqrt{x+2}=\sqrt{y}\\x^2+\left(x+3\right)\left(2x-y+5\right)=x+16\end{matrix}\right.\)
giải hệ phương trình sau:
\(\left\{{}\begin{matrix}4xy+4\left(x^2+y^2\right)+\frac{3}{\left(x+y\right)^2}=7\\2x+\frac{1}{x+y}=3\end{matrix}\right.\)
Giải các hệ
\(\left\{{}\begin{matrix}\sqrt{x+y}+\sqrt{2x+y+2}=7\\3x+2y=23\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^2+y+x^3y+xy^2+xy=\frac{-5}{4}\\x^4+y^2+xy\left(1+2x\right)=\frac{-5}{4}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\left(x^2+1\right)+y\left(x+y\right)=7y\\\left(x^2+1\right)\left(x+y-2\right)=-y\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x\left(x+y+1\right)=3\\\left(x+y\right)^2-\frac{5}{x^2}=-1\end{matrix}\right.\)