Bài 3: Hàm số liên tục

H24

Xét tính liên tục của hàm số f(x) =\(\left\{{}\begin{matrix}\dfrac{x+\sqrt{x+2}}{x+1}khix>-1\\2x+3khix< =-1\end{matrix}\right.\)

MỌI NGƯỜI GIÚP MÌNH NHANH VỚI MÌNH CẢM ƠN

 

AH
22 tháng 2 2021 lúc 19:07

Lời giải:

Ta có \(\lim\limits_ {x\to -1^+}f(x)=\lim\limits_ {x\to -1^+}\frac{x+\sqrt{x+2}}{x+1}=\lim\limits_ {x\to -1^+}\frac{x^2-x-2}{(x+1)(x-\sqrt{x+2})}\)

\(=\lim\limits_ {x\to -1^+}\frac{x-2}{x-\sqrt{x+2}}=\frac{3}{2}\)

\(\lim\limits_ {x\to -1^-} f(x)=\lim\limits_ {x\to -1^-}(2x+3)=1\)

\(\Rightarrow \lim\limits_ {x\to -1^-}f(x)\neq \lim\limits_ {x\to -1^+}f(x)\)

Do đó hàm số gián đoạn tại $x=-1$

Với $x\in (-\infty; -1)$ và $(-1;+\infty)$ thì $f(x)$ là phân thức luôn xác định nên $f(x)$ liên tục trên $(-\infty; -1)$ và $(-1;+\infty)$

 

 

Bình luận (0)

Các câu hỏi tương tự
1L
Xem chi tiết
JP
Xem chi tiết
JP
Xem chi tiết
PN
Xem chi tiết
SK
Xem chi tiết
LH
Xem chi tiết
SK
Xem chi tiết
H24
Xem chi tiết
SK
Xem chi tiết