Bài 3: Hàm số liên tục

SK
Hướng dẫn giải Thảo luận (2)

Hàm số f(x) = x3 + 2x - 1 xác định trên R và x0 = 3 ∈ R.

f(x) = (x3 + 2x - 1) = 33 + 2.3 - 1 = f(3)
nên hàm số đã cho liên tục tại điểm x0 = 3.



Trả lời bởi Đặng Phương Nam
SK
Hướng dẫn giải Thảo luận (1)

a) Ta có ham-so-lien-tuc = 22 +2.2 +4 = 12.

ham-so-lien-tucnên hàm số y = g(x) gián đoạn tại x0 = 2.

b) Để hàm số y = f(x) liên tục tại x0 = 2 thì ta cần thay số 5 bởi số 12

Trả lời bởi Mai Hà Chi
SK
Hướng dẫn giải Thảo luận (2)

a) Các bạn tự vẽ hình nhé . Đồ thị hàm số y = f(x) là một đường không liền nét mà bị đứt quãng tại x0 = -1. Vậy hàm số đã cho liên tục trên khoảng (-∞; -1) và (- 1; +∞).

b) +) Nếu x < -1: f(x) = 3x + 2 liên tục trên (-∞; -1) (vì đây là hàm đa thức).

+) Nếu x> -1: f(x) = x2 – 1 liên tục trên (-1; +∞) (vì đây là hàm đa thức).

+) Tại x = -1;

Ta có =ham-so-lien-tuc= 3(-1) +2 = -1.

ham-so-lien-tuc= (-1)2 – 1 = 0.

ham-so-lien-tucnên không tồn tại ham-so-lien-tuc. Vậy hàm số gián đoạn tại
x0 = -1.

Trả lời bởi Mai Hà Chi
SK
Hướng dẫn giải Thảo luận (1)

+) Hàm số ham-so-lien-tuc xác định khi và chỉ khi x2+ x – 6 ≠ 0 <=> x ≠ -3 và x ≠ 2.

Hàm số f(x) liên tục trên các khoảng (-∞; -3), (-3; 2) và (2; +∞)

+) Hàm số g(x) = tanx + sinx xác định khi và chỉ khi

tanx ≠ 0 <=> x ≠ π/2 +kπ với k ∈ Z.

Hàm số g(x) liên tục trên các khoảng ( – π/2+kπ; π/2 +kπ) với k ∈ Z.

Trả lời bởi Mai Hà Chi
SK
Hướng dẫn giải Thảo luận (1)

Ý kiến đúng

Giả sử ngược lại y = f(x) + g(x) liên tục tại x0. Đặt h(x) = f(x) + g(x). Ta có g(x) = h(x) – f(x).

Vì y = h(x) và y = f(x) liên tục tại x0 nên hiệu của chúng là hàm số y = g(x) phải liên tục tại x0. Điều này trái với giả thiết là y = g(x) không liên tục tại x0.

Trả lời bởi Mai Hà Chi
SK
Hướng dẫn giải Thảo luận (2)

a) Hàm số f(x) = 2x3 + 6x + 1 là hàm đa thức nên liên tục trên R.

Mặt khác vì f(0).f(1) = 1.(-3) < 0 nên phương trình có nghiệm trong khoảng (1; 2).

Vậy phương trình f(x) = 0 có ít nhất hai nghiệm.

b) Hàm số g(x) = cosx – x xác định trên R nên liên tục trên R.

Mặt khác, ta có g(0).g(π/2) = 1. (-π/2) < 0 nên phương trình đã cho có nghiệm trong khoảng (0; π/2).

Trả lời bởi Mai Hà Chi
SK
Hướng dẫn giải Thảo luận (1)

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Hàm số này có tập xác định là R \ {0}

Giải sách bài tập Toán 11 | Giải sbt Toán 11undefined Trả lời bởi Nguyễn Lê Phước Thịnh
SK
Hướng dẫn giải Thảo luận (1)

f(x) = f(a); f(x)= f(b).

Trả lời bởi qwerty
SK
Hướng dẫn giải Thảo luận (1)
SK
Hướng dẫn giải Thảo luận (1)