Bài 3: Hàm số liên tục

1L

Tìm m để các hàm số f(x) = \(\left\{{}\begin{matrix}\dfrac{\sqrt{x+1}-1}{2x}khix>0\\2x^2+3mx+1khix\le0\end{matrix}\right.\) liên tục tại x=0

AH
19 tháng 6 2021 lúc 22:07

Lời giải:

Để hàm liên tục tại $x=0$ thì:

\(\lim\limits_{x\to 0+}f(x)=\lim\limits_{x\to 0-}f(x)=f(0)\)

\(\Leftrightarrow \lim\limits_{x\to 0+}\frac{\sqrt{x+1}-1}{2x}=\lim\limits_{x\to 0-}(2x^2+3mx+1)=1\)

\(\Leftrightarrow \lim\limits_{x\to 0+}\frac{1}{2(\sqrt{x+1}+1)}=0\Leftrightarrow \frac{1}{2}=0\) (vô lý)

Vậy không tồn tại $m$ thỏa mãn.

 

 

 

Bình luận (0)

Các câu hỏi tương tự
JP
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết
LH
Xem chi tiết
SK
Xem chi tiết
JP
Xem chi tiết
MN
Xem chi tiết
PT
Xem chi tiết
MA
Xem chi tiết