Bài 3: Hàm số liên tục

PN

Cho hàm số :

\(f\left(x\right)=\left\{{}\begin{matrix}\dfrac{\sqrt{x^2-1}+\sqrt[3]{\left(x-1\right)^3}}{\sqrt{x-1}}\forall x>1\\\sqrt{2};.....x=1\\\dfrac{\sqrt[3]{x}-1}{\sqrt{2}-\sqrt{x+1}};....\left|x\right|< 1\end{matrix}\right.\)

Xét tính liên tục của hàm số tại x0=1

H24
14 tháng 2 2021 lúc 11:08

\(\lim\limits_{x\rightarrow1^+}f\left(x\right)=\lim\limits_{x\rightarrow1^+}\dfrac{\sqrt{x^2-1}+\sqrt[3]{\left(x-1\right)^3}}{\sqrt{x-1}}=\lim\limits_{x\rightarrow1^+}\dfrac{\left(x^2-1\right)^{\dfrac{1}{2}}+x-1}{\left(x-1\right)^{\dfrac{1}{2}}}=\lim\limits_{x\rightarrow1^+}\dfrac{\dfrac{1}{2}\left(x^2-1\right)^{-\dfrac{1}{2}}.2+1}{\dfrac{1}{2}\left(x-1\right)^{-\dfrac{1}{2}}}\)

\(=\dfrac{1}{0}=+\infty\)

\(\lim\limits_{x\rightarrow1^-}f\left(x\right)=\lim\limits_{x\rightarrow1^-}\dfrac{\sqrt[3]{x}-1}{\sqrt{2}-\sqrt{x+1}}=\lim\limits_{x\rightarrow1^-}\dfrac{\left(x-1\right)\left(\sqrt{2}+\sqrt{x+1}\right)}{[\left(\sqrt[3]{x}\right)^2+\sqrt[3]{x}+1]\left(1-x\right)}=\lim\limits_{x\rightarrow1^-}\dfrac{-\left(\sqrt{2}+\sqrt{1+1}\right)}{1+1+1}=-\dfrac{2\sqrt{2}}{3}\)

\(f\left(1\right)=\sqrt{2}\)

\(\lim\limits_{x\rightarrow1^-}f\left(x\right)\ne\lim\limits_{x\rightarrow1^+}f\left(x\right)\ne f\left(x\right)\)=> ham gian doan tai x=1

Bình luận (1)

Các câu hỏi tương tự
SK
Xem chi tiết
LH
Xem chi tiết
SK
Xem chi tiết
H24
Xem chi tiết
1L
Xem chi tiết
SK
Xem chi tiết
JP
Xem chi tiết
JP
Xem chi tiết
NH
Xem chi tiết