Hàm số:
tại x = 1 có tập xác định là R
Ta có g(1) = -2 (1)
Từ (1), (2) và (3) suy ra
Vậy g(x) liên tục tại x = 1
Hàm số:
tại x = 1 có tập xác định là R
Ta có g(1) = -2 (1)
Từ (1), (2) và (3) suy ra
Vậy g(x) liên tục tại x = 1
Xét tính liên tục của các hàm số sau trên tập xác định của chúng g ( x ) = 1 - x x - 2 2 n ế u x ≠ 2 3 n ế u x = 2
Xét tính liên tục của mỗi hàm số sau trên tập xác định của hàm số đó:
a) f(x)=x2+sinx;
b) g(x)=x4−x2+\(\dfrac{6}{x-1}\);
c) h(x)=`(2x)/(x−3)+(x−1)/(x+4)`.
Xét tính liên tục của các hàm số sau trên TXĐ của chúng
f(x)= {x2-3x +4 khi x<2
{ 5 khi x=2
{2x +1 khi x>2
xét tính liên tục của hàm số sau tại x = 1
\(f\left(x\right)=\left\{{}\begin{matrix}x^2+3x+1\\2x+2\end{matrix}\right.\) khi \(x\ge1\); khi \(x< 1\)
xét tính liên tục của hàm số sau tại x = 1
\(f\left(x\right)=\left\{{}\begin{matrix}\dfrac{2x^2-5x+3}{x-1}\\4\end{matrix}\right.\) khi \(x\ne1\); khi \(x=1\)
Xét tính liên tục của các hàm số sau: f ( x ) = x + 5 t ạ i x = 4
xét tính liên tục của hàm số sau tại x = 2
\(f\left(x\right)=\left\{{}\begin{matrix}\dfrac{2-\sqrt{2x^2-4}}{2-x}\\1\end{matrix}\right.\) khi \(x\ne2\); khi \(x=2\)
a) Xét tính liên tục của hàm số y = g ( x ) tại x 0 = 2 , biết: g x = x 3 - 8 x - 2 n ế u x ≠ 2 5 n ế u x = 2
b.Trong biểu thức g(x) ở trên, cần thay số 5 bởi số nào đó để hàm số liên tục tại x 0 = 2 .
Câu 1:
Cho f(x)= \(\dfrac{\sqrt{x+2}-\sqrt{2-x}}{x}\), x≠0. Phải bổ sung thêm giá trị f(0) bằng bao nhiêu thì hàm số f(x) liên tục tại x=0?
Câu 2:
Xét tính liên tục của hàm số
a, f(x)= \(\left\{{}\begin{matrix}x+\dfrac{3}{2}\\\dfrac{\sqrt{x+1}-1}{\sqrt[3]{1+x}-1}\end{matrix}\right.\)khi x≤0 và x>0 tại xo=0
b, f(x)= \(\left\{{}\begin{matrix}\dfrac{x^3-x^2+2x-2}{x-1}\\3x+a\end{matrix}\right.\)với x<1 và với x≥1, xo=1