Bài 4. ÔN TẬP CHƯƠNG II

LL

xác định m để phương trình \(\left(x-1\right)\left[x^2+2\left(m+3\right)x+4m+12\right]=0\) có 3 nghiệm phân biệt lớn hơn -1

a.c giúp em bài này với ạ. em cảm on truoc ạ. em đang cần gấp ạ

NL
6 tháng 3 2020 lúc 22:45

Phương trình luôn có 1 nghiệm \(x=1\)

Xét \(x^2+2\left(m+3\right)x+4m+12=0\) (1)

Để pt đã cho có 3 nghiệm thỏa mãn yêu cầu thì (1) có 2 nghiệm pb khác 1 và lớn hơn -1

\(\Rightarrow\left\{{}\begin{matrix}\Delta'>0\\a+b+c\ne0\\-1< x_1< x_2\end{matrix}\right.\)

Ta có: \(\Delta'=m^2+6m+9-4m-12=m^2+2m-3>0\Rightarrow\left[{}\begin{matrix}m< -3\\m>1\end{matrix}\right.\)

\(a+b+c\ne0\Leftrightarrow1+2m+6+4m+12\ne0\Rightarrow m\ne-\frac{19}{6}\)

\(-1< x_1< x_2\Leftrightarrow\left\{{}\begin{matrix}\frac{x_1+x_2}{2}>-1\\\left(x_1+1\right)\left(x_2+1\right)>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2>-2\\x_1x_2+x_1+x_2+1>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-2\left(m+3\right)>-2\\4m+12-2\left(m+3\right)+1>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< -2\\m>-\frac{7}{2}\end{matrix}\right.\) \(\Rightarrow-\frac{7}{2}< m< -2\)

Kết hợp lại ta được: \(\left\{{}\begin{matrix}-\frac{7}{2}< m< -3\\m\ne-\frac{19}{6}\end{matrix}\right.\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
MK
Xem chi tiết
VQ
Xem chi tiết
H24
Xem chi tiết
NN
Xem chi tiết
N7
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
LY
Xem chi tiết
H24
Xem chi tiết