NM

\(x^2+mx-1=0\)

tìm m để pt có 2 nghiệm phân biệt thỏa mãn \(x^3_1+x^3_2=-4\)

NL
2 tháng 3 2022 lúc 14:57

\(\Delta=m^2+4>0;\forall m\Rightarrow\) phương trình luôn có 2 nghiệm pb

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=-1\end{matrix}\right.\)

\(x_1^3+x_2^3=-4\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=-4\)

\(\Leftrightarrow-m^3-3m=-4\)

\(\Leftrightarrow m^3+3m-4=0\)

\(\Leftrightarrow\left(m-1\right)\left(m^2+m+4\right)=0\)

\(\Leftrightarrow m=1\)

Bình luận (1)
H24
2 tháng 3 2022 lúc 14:58

\(\Delta=m^2-4.1.\left(-1\right)=m^2+4>0\) suy ra pt luôn có 2 nghiệm phân biệt 

Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=-1\end{matrix}\right.\)

\(x^3_1+x^3_2=-4\\ \Leftrightarrow\left(x_1+x_2\right)\left(x^2_1-x_1x_2+x_2^2\right)=-4\\ \Leftrightarrow-m\left[\left(x_1+x_2\right)^2-3x_1x_2\right]=-4\\ \Leftrightarrow m\left[\left(-m\right)^2-3.\left(-1\right)\right]=4\\ \Leftrightarrow m\left(m+3\right)-4=0\\ \Leftrightarrow m^2+3m-4=0\\ \Leftrightarrow m^2+4m-m-4=0\\ \Leftrightarrow m\left(m+4\right)-\left(m+4\right)=0\\ \Leftrightarrow\left(m+4\right)\left(m-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=-4\\m=1\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
PT
Xem chi tiết
DA
Xem chi tiết
KP
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
CG
Xem chi tiết
KP
Xem chi tiết
TV
Xem chi tiết