H24

\(x^2-2\left(m+1\right)x+2m=0\). CMR pt có 2 nghiệm x1, x2 thỏa mãn:

a. \(3x^2_1+3x_2^2-5x_1^2x_2-5x_1x_2^2=-4\)

b. \(\left|x_1\right|-\left|x_2\right|=5\)

AH
27 tháng 1 2024 lúc 21:42

Lời giải:
Để pt có 2 nghiệm $x_1,x_2$ thì:

$\Delta'=(m+1)^2-2m\geq 0\Leftrightarrow m^2+1\geq 0$

$\Leftrightarrow m\in\mathbb{R}$

Áp dụng định lý Viet, với $x_1,x_2$ là 2 nghiệm của pt thì:

\(\left\{\begin{matrix} x_1+x_2=2(m+1)\\ x_1x_2=2m\end{matrix}\right.\)

a.

$|x_1-x_2|=16$

$\Leftrightarrow \sqrt{(x_1-x_2)^2}=16$

$\Leftrightarrow \sqrt{(x_1+x_2)^2-4x_1x_2}=16$

$\Leftrightarrow \sqrt{[2(m+1)]^2-8m}=16$

$\Leftrightarrow \sqrt{4(m+1)^2-8m}=16$

$\Leftrightarrow \sqrt{4m^2+4}=16$

$\Leftrightarrow 2\sqrt{m^2+1}=16$

$\Leftrightarrow \sqrt{m^2+1}=8\Leftrightarrow m^2+1=64$

$\Leftrightarrow m=\pm \sqrt{63}$ (tm)

b/

$|x_1|-|x_2|=5$

$\Rightarrow (|x_1|-|x_2|)^2=25$

$\Leftrightarrow x_1^2+x_2^2-2|x_1x_2|=25$

$\Leftrightarrow (x_1+x_2)^2-2x_1x_2-2|x_1x_2|=25$

$\Leftrightarrow 4(m+1)^2-4m-4|m|=25(*)$

Nếu $m\geq 0$ thì:

$(*)\Leftrightarrow 4(m+1)^2-8m=25$

$\Leftrightarrow 4m^2+4m-25=0$

$\Leftrightarrow m=\frac{1}{2}(-1+ \sqrt{26})$ (do $m\geq 0$)

Nếu $m<0$ thì:

$(*)\Leftrightarrow 4(m+1)^2=25$

$\Leftrightarrow m+1=\pm \frac{5}{2}$

$\Leftrightarrow m=\frac{3}{2}$ hoặc $m=\frac{-7}{2}$

Do $m<0$ nên $m=\frac{-7}{2}$

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
NM
Xem chi tiết
DN
Xem chi tiết
NK
Xem chi tiết
TT
Xem chi tiết
KA
Xem chi tiết
VN
Xem chi tiết
H24
Xem chi tiết