\(\left(x-6\right)^3=\left(x-6\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x-6=0\\x-6=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=6\\x=7\end{matrix}\right.\)
\(\left(x-6\right)^3=\left(x-6\right)^2\\ \Rightarrow\left(x-6\right)^3-\left(x-6\right)^2=0\\ \Rightarrow\left(x-6\right)^2\left(x-7\right)=0\\ \Rightarrow\left[{}\begin{matrix}\left(x-6\right)^2=0\\x-7=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=6\\x=7\end{matrix}\right.\)
x − 6 ) 3 = ( x − 6 ) 2 ⇒ ( x − 6 ) 3 − ( x − 6 ) 2 = 0 ⇒ ( x − 6 ) 2 ( x − 7 ) = 0 ⇒ [ ( x − 6 ) 2 = 0 x − 7 = 0 ⇒ [ x = 6 x = 7
Ta có: \(\left(x-6\right)^3=\left(x-6\right)^2\)
\(\Leftrightarrow\left(x-6\right)^2\left(x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=7\end{matrix}\right.\)