Cân bằng hệ số:
\(25x^2+36y^2\ge60xy\Rightarrow5x^2+\dfrac{36}{5}y^2\ge12xy\)
\(4x^2+9z^2\ge-12zx\Rightarrow3x^2+\dfrac{27}{4}z^2\ge-9zx\)
\(16y^2+25z^2\ge-40yz\Rightarrow\dfrac{4}{5}y^2+\dfrac{5}{4}z^2\ge-2yz\)
Cộng vế với vế:
\(8x^2+8y^2+8z^2\ge12xy-9zx-2yz\)
\(\Leftrightarrow8x^2+8y^2+8z^2+16xy+16yz+16zx\ge28xy+14yz+7zx\)
\(\Leftrightarrow8\left(x+y+z\right)^2\ge7\left(4xy+2yz+zx\right)\)
\(\Leftrightarrow4xy+2yz+zx\le\dfrac{8}{7}\)
Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(\dfrac{6}{7};\dfrac{5}{7};-\dfrac{4}{7}\right)\)
Đúng 1
Bình luận (4)