Chương 4: GIỚI HẠN

LA

Với mọi giá trị của tham số m , chứng minh phương trình \(x^5+x^2-\left(m^2+2\right)x-1=0\) luôn có ít nhất 1 nghiệm thực.

NL
18 tháng 3 2021 lúc 17:06

Đặt \(f\left(x\right)=x^5+x^2-\left(m^2+2\right)x-1\Rightarrow f\left(x\right)\) liên tục trên R

Ta có: \(f\left(0\right)=-1< 0\) 

\(f\left(-1\right)=m^2+1>0\) ; \(\forall m\)

\(\Rightarrow f\left(0\right).f\left(-1\right)< 0\) ;\(\forall m\)

\(\Rightarrow f\left(x\right)=0\) luôn có ít nhất 1 nghiệm thuộc \(\left(-1;0\right)\) (đpcm)

Bình luận (1)

Các câu hỏi tương tự
LS
Xem chi tiết
H24
Xem chi tiết
DN
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
MA
Xem chi tiết
LA
Xem chi tiết
PL
Xem chi tiết
AL
Xem chi tiết