H24

Viết phương trình đường thẳng d qua M(2;4) và cắt 2 tia Ox, Oy lần lượt tại A,B sao co OA + OB đạt giá trị nhỏ nhất

NL
24 tháng 3 2021 lúc 18:35

Do d qua M nên pt có dạng: \(y=kx-2k+4\)

Tọa độ A: \(A\left(\dfrac{2k-4}{k};0\right)\) , tọa độ B: \(B\left(0;-2k+4\right)\)

Để A và B nằm trên tia Ox, Oy \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2k-4}{k}>0\\-2k+4>0\end{matrix}\right.\) \(\Rightarrow k< 0\)

Khi đó:

\(T=OA+OB=\dfrac{2k-4}{k}+\left(-2k+4\right)=6+2\left(-k+\dfrac{2}{-k}\right)\ge6+4\sqrt{\left(-k\right)\left(\dfrac{2}{-k}\right)}=6+4\sqrt{2}\)

Dấu "=" xảy ra khi \(-k=\dfrac{2}{-k}\Leftrightarrow k=-\sqrt{2}\)

Phương trình d: \(k=-\sqrt{2}x+4+2\sqrt{2}\)

Bình luận (0)

Các câu hỏi tương tự
DT
Xem chi tiết
QL
Xem chi tiết
DY
Xem chi tiết
N1
Xem chi tiết
PB
Xem chi tiết
AA
Xem chi tiết
H24
Xem chi tiết
TV
Xem chi tiết
PB
Xem chi tiết