\(a,8-2\sqrt{7}=\sqrt{7}^2-2\sqrt{7}+1^2=\left(\sqrt{7}-1\right)^2\)
\(b,8-2\sqrt{15}=\sqrt{5}^2-2.\sqrt{3}.\sqrt{5}+\sqrt{3}^2=\left(\sqrt{5}-\sqrt{3}\right)^2\)
\(c,8+4\sqrt{3}=2^2+2.2.\sqrt{3}+\sqrt{3}^2=\left(2+\sqrt{3}\right)^2\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
\(a,8-2\sqrt{7}=\sqrt{7}^2-2\sqrt{7}+1^2=\left(\sqrt{7}-1\right)^2\)
\(b,8-2\sqrt{15}=\sqrt{5}^2-2.\sqrt{3}.\sqrt{5}+\sqrt{3}^2=\left(\sqrt{5}-\sqrt{3}\right)^2\)
\(c,8+4\sqrt{3}=2^2+2.2.\sqrt{3}+\sqrt{3}^2=\left(2+\sqrt{3}\right)^2\)
Biến Đổi Biểu Thức Trong Căn Thành Bình Phương 1 Tổng Hoặc Bình Phương 1 Hiệu Rồi Từ Đó Phá Bớt 1 Lớp Căn
\(a,\sqrt{3+2\sqrt{2}}\)
\(b,\sqrt{3-2\sqrt{2}}\)
\(c,\sqrt{8-2\sqrt{15}}\)
\(d,\sqrt{8-2\sqrt{15}}\)
Viết các biểu thức sau dưới dạng bình phương:
\(13-4\sqrt{3}\)
rút gọn các biểu thức sau:
a)\(\left(\sqrt{5}+\sqrt{3}\right)\sqrt{8-2\sqrt{5}}\)
b) \(\sqrt{3-\sqrt{5}}-\sqrt{3+\sqrt{5}}\)
c) \(\sqrt{5-2\sqrt{6}}-\sqrt{5+2\sqrt{6}}\)
Đưa các biểu thức sau về dạng bình phương:
a, \(3+2\sqrt{2}\)
b, \(3-\sqrt{8}\)
c, \(9+4\sqrt{5}\)
d, \(23-8\sqrt{7}\)
Viết dạng bình phương 1 tổng , hiệu b) 10 -2√21 c) 8 + 2√15 d) 7 + 4√3 e) 9 - 4√2
Viết phương trình này dưới dạng tổng bình phương 1 hiệu 8 - \(\sqrt{25}\)
Viết dạng bình phương một tổng a) 11 + 2√30 b) 10 - 2√21 c) 8 + 2√15 d) 7 + 4√3 e) 9 - 4√2
a,\(\sqrt{8+2\sqrt{15}}\) -\(\sqrt{6+2\sqrt{15}}\)
b, \(\sqrt{17-2\sqrt{72}}-\sqrt{19+2\sqrt{18}}\)
c, \(\sqrt{8-2\sqrt{7}}+\sqrt{8+2\sqrt{7}}\)
d, \(\sqrt{12+2\sqrt{11}}-\sqrt{12-2\sqrt{11}}\)
e, \(\sqrt{10-2\sqrt{21}}-\sqrt{9-2\sqrt{14}}\)
Giải phương trình:
a) \(\sqrt{4-3x}=8\)
b) \(\sqrt{4x-8}-12\sqrt{\dfrac{x-2}{9}}=-1\)
c) \(\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)=7\)
a, \(\sqrt{200}-\sqrt{32}+\sqrt{72}\)
b, \(4\sqrt{20}-3\sqrt{125}+5\sqrt{45}-15\sqrt{\dfrac{1}{5}}\)
c, \(\left(2\sqrt{8}+3\sqrt{5}-7\sqrt{2}\right)\left(72-5\sqrt{20}-2\sqrt{2}\right)\)