BP

vẽ góc nhọn xay . trên tia ã lấy hai điểm b và c ( b nằm giữa a và c ) trên tia ay lấy hai điểm d và e sao cho ad = ab , ae= ac 

a, chứng minh be = dc 

 b, gọi o là giao điểm của be và dc . chứng minh tam giác obc bằng tam giác ode 

c, vẽ trung điểm m của ce . chứng minh am là đg trung ttruwcj của ce

NT
2 tháng 7 2021 lúc 22:12

a) Xét ΔABE và ΔADC có 

AB=AD(gt)

\(\widehat{DAC}\) chung

AE=AC(gt)

Do đó: ΔABE=ΔADC(c-g-c)

Suy ra: BE=DC(hai cạnh tương ứng)

b) Ta có: ΔABE=ΔADC(cmt)

nên \(\widehat{ABE}=\widehat{ADC}\)(hai góc tương ứng)

mà \(\widehat{ABE}+\widehat{DBC}=180^0\)(hai góc kề bù)

và \(\widehat{ADC}+\widehat{ODE}=180^0\)(hai góc kề bù)

nên \(\widehat{OBC}=\widehat{ODE}\)

Xét ΔOBC và ΔODE có

\(\widehat{OBC}=\widehat{ODE}\)(cmt)

BC=DE

\(\widehat{OCB}=\widehat{OED}\)(ΔACD=ΔAEB)

Do đó: ΔOBC=ΔODE(g-c-g)

c) Ta có: AC=AE(gt)

nên A nằm trên đường trung trực của CE(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: MC=ME(M là trung điểm của CE)

nên M nằm trên đường trung trực của CE(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra AM là đường trung trực của CE(đpcm)

Bình luận (2)

Các câu hỏi tương tự
TH
Xem chi tiết
PT
Xem chi tiết
BP
Xem chi tiết
NA
Xem chi tiết
VN
Xem chi tiết
NN
Xem chi tiết
HT
Xem chi tiết
NH
Xem chi tiết
TP
Xem chi tiết