a) Xét ΔABE và ΔADC có
AB=AD(gt)
\(\widehat{DAC}\) chung
AE=AC(gt)
Do đó: ΔABE=ΔADC(c-g-c)
Suy ra: BE=DC(hai cạnh tương ứng)
b) Ta có: ΔABE=ΔADC(cmt)
nên \(\widehat{ABE}=\widehat{ADC}\)(hai góc tương ứng)
mà \(\widehat{ABE}+\widehat{DBC}=180^0\)(hai góc kề bù)
và \(\widehat{ADC}+\widehat{ODE}=180^0\)(hai góc kề bù)
nên \(\widehat{OBC}=\widehat{ODE}\)
Xét ΔOBC và ΔODE có
\(\widehat{OBC}=\widehat{ODE}\)(cmt)
BC=DE
\(\widehat{OCB}=\widehat{OED}\)(ΔACD=ΔAEB)
Do đó: ΔOBC=ΔODE(g-c-g)
c) Ta có: AC=AE(gt)
nên A nằm trên đường trung trực của CE(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: MC=ME(M là trung điểm của CE)
nên M nằm trên đường trung trực của CE(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra AM là đường trung trực của CE(đpcm)