Bài 1: Hàm số lượng giác

JE

từ pt \(1+sin^3x+cos^3x=\frac{3}{2}sin2x\). tính \(cos\left(x+\frac{\pi}{4}\right)\)

NL
27 tháng 9 2020 lúc 15:57

\(1+sin^3x+cos^3x=3sinx.cosx\)

\(\Leftrightarrow1+\left(sinx+cosx\right)\left(1-sinx.cosx\right)=3sinx.cosx\)

Đặt \(sinx+cosx=t\Rightarrow\left[{}\begin{matrix}\left|t\right|\le\sqrt{2}\\sinx.cosx=\frac{t^2-1}{2}\end{matrix}\right.\)

Pt trở thành:

\(1+t\left(1-\frac{t^2-1}{2}\right)=\frac{3}{2}\left(t^2-1\right)\)

\(\Leftrightarrow2+t\left(3-t^2\right)=3t^2-3\)

\(\Leftrightarrow t^3+3t^2-3t-5=0\)

\(\Leftrightarrow\left(t+1\right)\left(t^2+2t-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=-1\\t=\sqrt{6}-1>\sqrt{2}\left(l\right)\\t=\sqrt{6}+1>\sqrt{2}\left(l\right)\end{matrix}\right.\)

\(\Rightarrow sinx+cosx=-1\Leftrightarrow\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=-1\)

\(\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}\)

\(\Rightarrow cos\left(x+\frac{\pi}{4}\right)=\pm\sqrt{1-sin^2\left(x+\frac{\pi}{4}\right)}=\pm\frac{\sqrt{2}}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
JE
Xem chi tiết
JE
Xem chi tiết
AK
Xem chi tiết
TN
Xem chi tiết
JE
Xem chi tiết
JE
Xem chi tiết
TA
Xem chi tiết
JE
Xem chi tiết
DH
Xem chi tiết