Cho tứ diện ABCD có BD vuông góc với AB và CD. Gọi P và Q lần lượt là trung điểm của của các cạnh CD và AB thỏa mãn BD:CD:PQ:AB = 3:4:5:6 . Gọi φ là góc giữa hai đường thẳng AB và CD. Giá trị của cosφ bằng
A. 7/8.
B. 1/2.
C. 11/16.
D. 1/4.
Cho hình chóp S.ABC có đáy là tam giác đều cạnh a, SA= 3 a và vuông góc với mặt đáy. Gọi M là trung điểm cạnh SB (tham khảo hình vẽ bên). Côsin góc giữa hai đường thẳng AM và SC bằng
A. 5 16
B. 11 16
C. 5 8
D. 3 8
Cho tứ diện ABCD có A B = C D = 2 3 . Gọi M và N lần lượt là trung điểm các cạnh AC, BD. Biết rằng MN = 3. Số đo góc hợp bởi hai đường thẳng AB, CD bằng
A. 30 °
B. 60 °
C. 90 °
D. 45 °
Cho tứ diện ABCD có AB=1, AC=2, AD=3, B A C ^ = C A D ^ = D A B ^ = 90 ° . Côsin của góc giữa hai mặt phẳng (ABC) và (BCD) là
A. 2 7
B. 2 13 13
C. 3 5 7
D. 1 3
Cho hình chóp tứ giác đều S.ABCD có cạnh bên và cạnh đáy đểu bằng a. Gọi O là tâm của ABCD. Gọi M là trung điểm SC và M' là hình chiếu vuông góc của M lên (ABCD). Diện tích của tam giác M' BD bằng
A. a 2 6 8
B. a 2 2
C. a 2 2 8
D. a 2 4
Cho tứ diện đều ABCD có cạnh bằng a, M là trung điểm của cạnh BC. Gọi α là góc giữa hai đường thẳng AB và DM, khi đó c o s α cbằng
A . 3 6
B . 2 2
C . 3 2
D . 1 2
Cho lăng trụ tam giác đều ABC.A'B'C' có AB= 2 3 ,AA'=2. Gọi M là trung điểm cạnh BB′ và N là điểm đối xứng của C′ qua C. Côsin góc giữa hai mặt phẳng (A′MN) và (ABC) bằng
A. 286 22
B. 3 22 22
C. 3 4
D. 7 4
Cho tứ diện đều ABCD có cạnh bằng 3. Gọi M, N lần lượt là trung điểm các cạnh AD, BD. Gọi P là điểm trên cạnh AB sao cho P B P A = 2018 2017 . Tính thể tích V của khối tứ diện PMNC.
A. 27. 2 12
B. 9.2018. 2 16.2017
C. 9. 2 16
D. 9.2017. 2 16.2018
Cho tứ diện OABC có OA,OB,OC đôi một vuông góc và OA=OB=a,OC=2a. Gọi M là trung điểm cạnh BC. Côsin góc giữa hai đường thẳng AB và OM bằng
A. 10 10
B. 10 5
C. 3 10 10
D. 15 5