CK

Từ điểm M ở ngoài đường tròn (O) vẽ các tiếp tuyến AB, AC với (O). Vẽ đường kính AC, tiếp tuyến tại C của đường tròn (O) cắt AB ở D. MO cắt AB tại I.

a) Chứng minh 4 điểm I, D,O,C  cùng thuộc một đường tròn.

b) MC cắt AB, OD lần lượt ở N và K. Chứng minh MA2 =MN.MK.

NL
11 tháng 1 lúc 16:46

Em coi lại đề, từ điểm M làm sao vẽ các tiếp tuyến AB, AC được nhỉ? Sau đó lại đường kính AC nữa, nghĩa là AC vừa là tiếp tuyến vừa là đường kính?

 

Bình luận (3)
NL
12 tháng 1 lúc 10:42

a. Ý này đơn giản em tự chứng mình

b.

Ta có \(\widehat{IAO}=\widehat{AMO}\) (cùng phụ \(\widehat{AOM}\))

\(\Rightarrow\Delta_VACD\sim\Delta_VMAO\left(g.g\right)\) 

\(\Rightarrow\dfrac{AC}{AM}=\dfrac{CD}{OA}=\dfrac{CD}{OC}\) (do OA=OC)

\(\Rightarrow\dfrac{AC}{CD}=\dfrac{AM}{OC}\)

\(\Rightarrow\Delta_VACM\sim\Delta_VCDO\left(c.g.c\right)\)

\(\Rightarrow\widehat{COD}=\widehat{AMC}\)

Mà \(\widehat{AMC}+\widehat{OCK}=90^0\) (tam giác ACM vuông tại A)

\(\Rightarrow\widehat{COD}+\widehat{OCK}=90^0\Rightarrow\widehat{OKC}=90^0\)

\(\Rightarrow\Delta_VMKO\sim\Delta_VMIN\) (chung góc \(\widehat{OMK}\))

\(\Rightarrow\dfrac{MK}{IM}=\dfrac{MO}{MN}\Rightarrow MN.MK=MI.MO\)

Mặt khác theo hệ thức lượng trong tam giác vuông MAO với đường cao AI:

\(MA^2=MI.MO\)

\(\Rightarrow MA^2=MN.MK\)

Bình luận (0)
NL
12 tháng 1 lúc 10:43

loading...

Bình luận (0)

Các câu hỏi tương tự
MA
Xem chi tiết
NH
Xem chi tiết
CH
Xem chi tiết
H24
Xem chi tiết
HL
Xem chi tiết
LH
Xem chi tiết
LA
Xem chi tiết
HV
Xem chi tiết
TN
Xem chi tiết