Bài 6: Tính chất hai tiếp tuyến cắt nhau

NN

Từ điểm M nằm ngoài đường tròn (O;R) vẽ hai tiếp tuyến MA, MB đến đường tròn ( A, B là tiếp điểm). AB cắt OM tại H. a) Chứng minh rằng: AB vuông góc với OM. b) Chứng minh rằng: HO.HM = 4 2 AB c) Kẻ đường kính AD. Từ O kẻ OI vuông góc với MD ( I  MD ), OI cắt AB tại E. Chứng minh rằng: ED là tiếp tuyến của đường đường tròn (O)

 

NT
17 tháng 12 2023 lúc 8:13

a: Xét (O) có

MA,MB là các tiếp tuyến

Do đó: MA=MB

=>M nằm trên đường trung trực của AB(1)

Ta có: OA=OB

=>O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra OM là đường trung trực của AB

=>OM\(\perp\)AB tại H và H là trung điểm của AB

b: Xét ΔOAM vuông tại A có AH là đường cao

nên \(HO\cdot HM=HA^2\)

=>\(HO\cdot HM=\left(\dfrac{1}{2}AB\right)^2=\dfrac{1}{4}AB^2\)

c: Xét ΔOAM vuông tại A có AH là đường cao

nên \(OH\cdot OM=OA^2=OD^2\left(3\right)\)

Xét ΔOIM vuông tại I và ΔOHE vuông tại H có

\(\widehat{HOE}\) chung

Do đó: ΔOIM đồng dạng với ΔOHE

=>\(\dfrac{OI}{OH}=\dfrac{OM}{OE}\)

=>\(OI\cdot OE=OH\cdot OM\left(4\right)\)

Từ (3) và (4) suy ra \(OI\cdot OE=OD^2\)

=>\(\dfrac{OI}{OD}=\dfrac{OD}{OE}\)

Xét ΔOID và ΔODE có

\(\dfrac{OI}{OD}=\dfrac{OD}{OE}\)

\(\widehat{DOE}\) chung

DO đó: ΔOID đồng dạng với ΔODE
=>\(\widehat{OID}=\widehat{ODE}=90^0\)

=>ED là tiếp tuyến của (O)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
NK
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
HQ
Xem chi tiết
PL
Xem chi tiết
KT
Xem chi tiết
CP
Xem chi tiết