H24

Từ điếm A ở ngoài đường tròn (O;R) vẽ các tiếp tuyến AB,AC đến (O) với B,C là các tiếp điểm

a/ Chứng minh OA vuông góc BC tại H và tứ giác OBAC nội tiếp đường tròn
b/ Từ A vẽ cát tuyến ADE (không qua O) cắt (O) tại D và E (D nằm giữa A và E). Chứng minh: AD.AE= AB2
c/ Vẽ dây cung BM song song với DE. Gọi giao điểm của CM và DE là i. Chứng minh i trung điểm DE

mọi người giúp mik với ạ

NT
15 tháng 3 2021 lúc 22:33

a) Xét (O) có 

AB là tiếp tuyến có B là tiếp điểm(gt)

AC là tiếp tuyến có C là tiếp điểm(gt)

Do đó: AB=AC(Tính chất hai tiếp tuyến cắt nhau)

Ta có: AB=AC(cmt)

nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: OB=OC(=R)

nên O nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra AO là đường trung trực của BC

hay OA⊥BC(đpcm)

 

Bình luận (0)

Các câu hỏi tương tự
AT
Xem chi tiết
DH
Xem chi tiết
NK
Xem chi tiết
TT
Xem chi tiết
PB
Xem chi tiết
DT
Xem chi tiết
NK
Xem chi tiết
AT
Xem chi tiết
ND
Xem chi tiết