Ôn tập Đường tròn

DK

Từ điểm A nằm ngoài (O, R) về tiếp tuyến AB, dây cung BC vuông góc ĐA tại H. a) Chứng minh AC là tiếp tuyển (O). b) Vẽ đường kinh BD của (O), AD cắt (O) tại K. Chứng minh AH IAO = AKA . Câu 8: Cho đường tròn (O; R) , đường kính AB Vẽ dây AC sao cho CAB = 30 deg Trên tia đối của tia BA lấy điểm M sao cho BM = R Chúng mình rằng: c) MC là tiếp tuyến của (O). d) M * C ^ 2 = 3R ^ 2 mọi người ơi giúp em với em cần gấp ạ

NT

Bài 1:

a: Ta có: ΔOBC cân tại O

mà OH là đường cao

nên OH là phân giác của góc BOC

Xét ΔOBA và ΔOCA có

OB=OC

\(\widehat{BOA}=\widehat{COA}\)

OA chung

Do đó: ΔOBA=ΔOCA

=>\(\widehat{OBA}=\widehat{OCA}\)

=>\(\widehat{OCA}=90^0\)

=>AC là tiếp tuyến của (O)

b: Xét (O) có

ΔBKD nội tiếp

BD là đường kính

Do đó: ΔBKD vuông tại K

=>BK\(\perp\)KD tại K

=>BK\(\perp\)AD tại K

Xét ΔABD vuông tại B có BK là đường cao

nên \(AK\cdot AD=AB^2\left(1\right)\)

Xét ΔABO vuông tại B có BH là đường cao

nên \(AH\cdot AO=AB^2\left(2\right)\)

Từ (1) và (2) suy ra \(AK\cdot AD=AH\cdot AO\)

Câu 8:

a: Xét (O) có

ΔCAB nội tiếp

AB là đường kính

Do đó: ΔCAB vuông tại C

=>\(\widehat{CAB}+\widehat{CBA}=90^0\)

=>\(\widehat{CBA}=60^0\)

Xét ΔOBC có OB=OC và \(\widehat{OBC}=60^0\)

nên ΔOCB đều

=>BC=OB=R

=>BO=BM=R

=>B là trung điểm của OM

Xét ΔOCM có

CB là đường trung tuyến

CB=1/2OM

Do đó: ΔOCM vuông tại C

b: Ta có: OB+BM=OM

=>OM=R+R=2R

Ta có: ΔOCM vuông tại C

=>\(OC^2+CM^2=OM^2\)

=>\(CM^2=\left(2R\right)^2-R^2=3R^2\)

Bình luận (0)

Các câu hỏi tương tự
NS
Xem chi tiết
NK
Xem chi tiết
LD
Xem chi tiết
TH
Xem chi tiết
TH
Xem chi tiết
NN
Xem chi tiết
CL
Xem chi tiết
SS
Xem chi tiết
HN
Xem chi tiết