H24

Từ điểm A nằm ngoài đường tròn (O;R) vẽ hai tiếp tuyến AB và AC với đường tròn (O;R) . Gọi H là giao điểm của AO và BC.

a) Chứng minh AO là đường trung trực BC
b) Vẽ đường kính CD của đường tròn (O) , AD cắt đường tròn (O) tại E. Chứng minh      \(AB^2=AE.AD\)

c) Tiếp tuyến E của đường tròn (O) cắt AB , AC lần lượt tại M và N . Chứng minh chu vi \(\Delta ANM=AB+AC\)

d) MN cắt AO tại I , EO cắt BC tại P . Chứng minh \(AE//IP\)

NT
22 tháng 12 2023 lúc 18:54

a: Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AB=AC

=>A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra AO là đường trung trực của BC

b: AO là đường trung trực của BC

=>AO\(\perp\)BC tại H và H là trung điểm của BC

Xét (O) có

\(\widehat{ABE}\) là góc tạo bởi tiếp tuyến BA và dây cung BE

\(\widehat{EDB}\) là góc nội tiếp chắn cung BE

Do đó: \(\widehat{ABE}=\widehat{EDB}\)

Xét ΔABE và ΔADB có

\(\widehat{ABE}=\widehat{ADB}\)

\(\widehat{BAE}\) chung

Do đó: ΔABE đồng dạng với ΔADB

=>\(\dfrac{AB}{AD}=\dfrac{AE}{AB}\)

=>\(AB^2=AD\cdot AE\)

c: Xét (O) có

MB,ME là các tiếp tuyến

Do đó: MB=ME

Xét (O) có

NE,NC là các tiếp tuyến

Do đó: NE=NC

Chu vi tam giác AMN là:

\(AM+MN+AN\)

\(=AM+ME+EN+AN\)

\(=AM+MB+AN+NC\)

=AB+AC

Bình luận (0)

Các câu hỏi tương tự
NH
Xem chi tiết
AT
Xem chi tiết
H24
Xem chi tiết
HT
Xem chi tiết
NL
Xem chi tiết
LT
Xem chi tiết
TL
Xem chi tiết
NA
Xem chi tiết
TA
Xem chi tiết