Bài 1: Quy tắc đếm

TM

Từ các chữ số 0,1,2,3,4,5 có thể lập được bao nhiêu số tự nhiên mà mỗi số có 6 chữ số khác nhau và chữ số 2 đứng cạnh chữ số 3.

VH
17 tháng 5 2016 lúc 10:44

Ta "dán" 2 chữ số 3 và 3 liền với nhau thành chữ số kép. Có hai cách "dán" (23 hoặc 32). Bài toán trở thành: có 5 chữ số 0,1,4,5, số kép. Hỏi có thể lập được bao nhiêu số tự nhiên mỗi số có 5 chữ số khác nhau.

Ta giải bằng quy tắc nhân như sau:

Bước 1: Dán 2 số 2 và 3 với nhau. Có \(n_1\) = 2 cách

Bước 2: Số hàng vạn có \(n_2\) = 4 cách chọn (trừ số 0)

Bước 3: Số hàng nghìn có \(n_3\) = 4 cách chọn

Bước 4: Số hàng trăm có \(n_4\) = 3 cách chọn

Bước 5: Số hàng chực có \(n_5\) = 2 cách chọn

Bước 6: Số hàng đơn vị có \(n_6\) = 1 cách chọn

Theo quy tắc nhân số các số cần chọn là

                     n = \(n_1\)\(n_2\)\(n_3\)\(n_4\)\(n_5\)\(n_6\) = 2.4.4.3.2.1 = 192

Vậy có 192 số cần tìm.

Bình luận (0)

Các câu hỏi tương tự
LM
Xem chi tiết
NN
Xem chi tiết
DT
Xem chi tiết
NB
Xem chi tiết
NO
Xem chi tiết
ND
Xem chi tiết
TK
Xem chi tiết
QA
Xem chi tiết
H1
Xem chi tiết