\(\sqrt{1+\dfrac{1}{ab}}=\sqrt{\dfrac{ab+1}{ab}}=\dfrac{\sqrt{ab\left(ab+1\right)}}{ab}=\dfrac{\sqrt{a^2b^2+ab}}{ab}\).
\(\sqrt{1+\dfrac{1}{ab}}=\sqrt{\dfrac{ab+1}{ab}}=\dfrac{\sqrt{ab\left(ab+1\right)}}{ab}=\dfrac{\sqrt{a^2b^2+ab}}{ab}\).
có ai biết giải bài này k hộ mình vs ( chi tiết hộ mình nhé )
bài 1: trục căn thức ở mẫu và rút gọn
a, \(\dfrac{1}{2\sqrt{2}-3\sqrt{3}}\)
b, \(\sqrt{\dfrac{3-\sqrt{5}}{3+\sqrt{5}}}\)
bài 2: trục căn thức ở mẫu và rút gọn
a, \(\dfrac{\sqrt{8}}{\sqrt{5}-\sqrt{3}}\)
b, \(\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}\)
bài 3: trục căn thức và thực hiện phép tính
a, M=\(\left(\dfrac{15}{\sqrt{6}+1}+\dfrac{4}{\sqrt{6}-2}-\dfrac{12}{3-\sqrt{6}}\right).\left(\sqrt{6}+11\right)\)
b, N= \(\left(1-\dfrac{5+\sqrt{5}}{1+\sqrt{5}}\right).\left(\dfrac{5-\sqrt{5}}{1-\sqrt{5}}-1\right)\)
Trục căn thức ở mẫu của các biểu thức sau:
\(\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{2}}\); \(\dfrac{1}{\sqrt{3}+\sqrt{2}+1}\)
trục căn thức ở mẫu \(\dfrac{1}{\sqrt{2}}\) và \(\dfrac{2+\sqrt{3}}{2-\sqrt{3}}\)
trục căn thức ở mẫu: \(\dfrac{1}{1-\sqrt[3]{2}}\)
Trục căn thức ở mẫu biểu thức \(\dfrac{1}{1-\sqrt{2}}\) ta được kết quả là :
trục căn thức ở mẫu \(\sqrt{\dfrac{a-2\sqrt{a}}{\sqrt{a}-2}}\)
1. Căn bậc ba của `8` là?
2. Tính \(\sqrt{16a^2}\)
3. Trục căn thức dưới mẫu của \(\dfrac{9-2\sqrt{3}}{3\sqrt{6}-2\sqrt{2}}\) là?
4. Cho tam giác ABC vuông ở C, hệ thức nào đúng:
`a) tan B = (AB)/(BC)`
`b) tan B = (AC)/(AB)`
`c) tan B = (AC)/(BC)`
`d) tan B = (AB)/(AC)`
Trục căn thức ở mẫu biểu thức \(\dfrac{5}{3\sqrt{8}}\)
Trục căn thức ở mẫu và rút gọn
\(\dfrac{\sqrt{2}}{\sqrt{5}-\sqrt{3}}\)