Bài 7: Biến đối đơn giản biểu thức chứa căn bậc hai (Tiếp theo)

SK

Trục căn thức ở mẫu :

a) \(\dfrac{1}{\sqrt{3}+\sqrt{2}+1}\)

b) \(\dfrac{1}{\sqrt{5}-\sqrt{3}+2}\)

MP
22 tháng 6 2017 lúc 7:19

a) \(\dfrac{1}{\sqrt{3}+\sqrt{2}+1}\) = \(\dfrac{\sqrt{3}+1-\sqrt{2}}{\left(\sqrt{3}+1+\sqrt{2}\right)\left(\sqrt{3}+1-\sqrt{2}\right)}\)

= \(\dfrac{\sqrt{3}+1-\sqrt{2}}{\left(\sqrt{3}+1\right)^2-2}=\dfrac{\left(\sqrt{3}+1-\sqrt{2}\right)\left(\sqrt{3}-1\right)}{2\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\)

= \(\dfrac{3-\sqrt{3}+\sqrt{3}-1-\sqrt{6}+\sqrt{2}}{2\left(3-1\right)}\) = \(\dfrac{2-\sqrt{6}+\sqrt{2}}{4}\)

b) \(\dfrac{1}{\sqrt{5}+2-\sqrt{3}}=\dfrac{\sqrt{5}+2+\sqrt{3}}{\left(\sqrt{5}+2\right)^2-3}\) = \(\dfrac{\sqrt{5}+\sqrt{3}+2}{4\sqrt{5}+6}\)

= \(\dfrac{\left(\sqrt{5}+\sqrt{3}+2\right)\left(4\sqrt{5}-6\right)}{\left(4\sqrt{5}+6\right)\left(4\sqrt{5}-6\right)}\) = \(\dfrac{20-6\sqrt{5}+4\sqrt{15}-6\sqrt{3}+8\sqrt{5}-12}{\left(4\sqrt{5}\right)^2-36}\)

= \(\dfrac{8+2\sqrt{5}-6\sqrt{3}+4\sqrt{15}}{44}\) = \(\dfrac{2\left(4+\sqrt{5}-3\sqrt{3}+2\sqrt{15}\right)}{2\left(22\right)}\)

= \(\dfrac{4+\sqrt{5}-3\sqrt{3}+2\sqrt{15}}{22}\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
LL
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
NV
Xem chi tiết
LH
Xem chi tiết
NN
Xem chi tiết
TT
Xem chi tiết