PB

Trong (Oxy), cho hình bình hành ABCD có tâm I(1;2) và hai đường thẳng AB, AD lần lượt có phương trình là x + 3y - 6 = 0 và 2x - 5y - 1 = 0. Viết phương trình đường thẳng BC và CD.

CT
26 tháng 4 2019 lúc 4:41

Đề kiểm tra 45 phút Hình học 10 Chương 3 có đáp án (Đề 4)

Ta có: A là giao điểm của AB và AD. Do đó, tọa độ A là nghiệm của hệ phương trình:

Đề kiểm tra 45 phút Hình học 10 Chương 3 có đáp án (Đề 4)

Hình bình hành ABCD có tâm I nên I là trung điểm của AC và BD ⇒ C(-1;3)

Đường thẳng BC đi qua C và song song với AD

Vì BC song song với AD nên BC có dạng: 2x - 5y + c = 0, (c ≠ -1)

Vì C thuộc BC nên: 2.(-1) - 5.3 + c = 0 ⇒ c = 17(tm)

Vậy phương trình đường thẳng BC là: 2x - 5y + 17 = 0

Đường thẳng DC đi qua C và song song với AB

Vì DC song song với AB nên DC có dạng: x + 3y + c = 0, (c ≠ -6)

Vì C thuộc DC nên: -1 + 3.3 + c = 0 ⇒ c = -8(tm)

 

Vậy phương trình đường thẳng DC là: x + 3y - 8 = 0

Bình luận (1)

Các câu hỏi tương tự
LN
Xem chi tiết
TN
Xem chi tiết
DT
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
PB
Xem chi tiết
HP
Xem chi tiết
BM
Xem chi tiết
PB
Xem chi tiết