H24

Lập phương trình đường thẳng chứa các cạnh của tam giác ABC biết A(1;-1), các đường trung trực của AB và BC lần lượt có phương trình là \(\Delta\): 2x - y + 1 = 0 và \(\Delta'\): x + 3y - 1 = 0

NC
10 tháng 4 2021 lúc 21:28

Đường thẳng AB nhận \(\overrightarrow{n}=\left(1;2\right)\) làm vecto pháp tuyến

AB đi qua A (1; -1) nên nó có phương trình là

x - 1 + 2 (y + 1) = 0 hay x + 2y + 1 = 0

Gọi M là trung điểm của AB ⇒ M ∈ Δ, tọa độ của M có dạng

M (t ; 2t + 1) với t là số thực và \(\overrightarrow{AM}=\left(t-1;2t+2\right)\)

⇒ AM ⊥ Δ 

⇒ \(\overrightarrow{AM}.\overrightarrow{n}=0\)

⇒ t + 1 + 2. (2t + 2) = 0

⇒ t = -1

Vậy M (- 1; - 1)

M là trung điểm của AB => Tọa độ B

Làm tương tự như thế sẽ suy ra tọa độ C

 

 

Bình luận (0)

Các câu hỏi tương tự
TM
Xem chi tiết
NC
Xem chi tiết
VH
Xem chi tiết
LP
Xem chi tiết
NV
Xem chi tiết
LH
Xem chi tiết
NM
Xem chi tiết
NV
Xem chi tiết
PB
Xem chi tiết