Bài 5. ÔN TẬP CUỐI NĂM

HH

Trong mặt phẳng với hệ tọa độ Oxy cho ΔABC có A(1;2), B(0;-1) và C(-1;3).

1/ Tìm tọa độ hình chiếu của A trên đường thẳng BC, tính diện tích ΔABC

2/ Viết phương trình đường tròn tâm B và tiếp xúc với đường thẳng AC.

3/ Viết phương trình thẳng đi qua O và cắt AB, AC tại M, N sao cho O là trung điểm của M,N

Giúp mình với mng!!!

NL
9 tháng 6 2020 lúc 21:57

a/ \(\overrightarrow{CB}=\left(1;-4\right)\Rightarrow BC=\sqrt{17}\)

Phương trình BC: \(4\left(x-0\right)+1\left(y+1\right)=0\Leftrightarrow4x+y+1=0\)

Gọi H là hình chiếu vuông góc của A lên BC \(\Rightarrow AH\perp BC\Rightarrow\) đường thẳng AH nhận \(\left(1;-4\right)\) là 1 vtpt

Phương trình AH: \(1\left(x-1\right)-4\left(y-2\right)=0\Leftrightarrow x-4y+7=0\)

H là giao điểm AH và BC nên tọa độ thỏa mãn: \(\left\{{}\begin{matrix}4x+y+1=0\\x-4y+7=0\end{matrix}\right.\) \(\Rightarrow H\left(-\frac{11}{17};\frac{27}{17}\right)\)

\(\Rightarrow\overrightarrow{AH}=\left(-\frac{28}{17};-\frac{7}{17}\right)\Rightarrow AH=\frac{7\sqrt{17}}{17}\)

\(\Rightarrow S_{ABC}=\frac{1}{2}AH.BC=\frac{7}{2}\)

Bình luận (0)
NL
9 tháng 6 2020 lúc 22:06

2/ \(\overrightarrow{CA}=\left(2;-1\right)\Rightarrow\) phương trình AC có dạng:

\(1\left(x-1\right)+2\left(y-2\right)=0\Leftrightarrow x+2y-5=0\)

Đường tròn tâm B tiếp xúc AC khi và chỉ khi:

\(R=d\left(B;AC\right)=\frac{\left|0.1+2.\left(-1\right)-5\right|}{\sqrt{1^2+2^2}}=\frac{7}{\sqrt{5}}\)

Phương trình đường tròn: \(x^2+\left(y+1\right)^2=\frac{49}{5}\)

3/ \(\overrightarrow{BA}=\left(1;3\right)\Rightarrow\) pt AB:

\(3\left(x-1\right)-1\left(y-2\right)=0\Leftrightarrow3x-y-1=0\)

M thuộc AB nên tọa độ có dạng: \(M\left(m;3m-1\right)\)

N thuộc AC nên tọa độ có dạng: \(N\left(5-2n;n\right)\)

O là trung điểm của MN nên: \(\left\{{}\begin{matrix}m+5-2n=0\\3m-1+n=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m=-\frac{3}{7}\\n=\frac{16}{7}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}M\left(-\frac{3}{7};-\frac{16}{7}\right)\\N\left(\frac{3}{7};\frac{16}{7}\right)\end{matrix}\right.\) \(\Rightarrow\overrightarrow{MN}=\left(\frac{6}{7};\frac{32}{7}\right)=\frac{2}{7}\left(3;16\right)\)

Phương trình MN: \(16\left(x+\frac{3}{7}\right)-3\left(y+\frac{16}{7}\right)=0\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
DD
Xem chi tiết
DD
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
MB
Xem chi tiết
TK
Xem chi tiết
LT
Xem chi tiết
VP
Xem chi tiết