trong mặt phẳng tọa độ xOy cho dường thẳng (d):y=2x+6
a) Viết phương trình đường thẳng đi qua điểm M(3,4) và song song với đường thẳng (d)
b)Tính khoảng cách từ gốc tọa độ O đến đường thẳng (d)
c)Tính diện tích tam giác tạo bởi đường thẳng (d) và 2 trục tọa độ
ai cmt nhanh nhất sẽ đc cộng thêm 20đ
Trong mặt phẳng tọa độ Oxy cho đường thẳng (d): y=2x-1
1) Vẽ đồ thị đường thẳng (d)
2) Viết phương trình đường thẳng (d1) đi qua A(2;1) và song song với đường thẳng (d'): y = -3x+4.
3) Tìm tọa độ giao điểm của hai đường thẳng (d) và (d')
Trong mặt phẳng tọa độ Oxy, cho điểm K(1;1) và đường thẳng (Δ) có phương trình \(y=2x+\sqrt{3}\). Gọi (d) là 1 đường thẳng song song với đường thẳng (Δ) có và cắt trục tung tại điểm có tung độ bằng 1. Hãy tính khoảng cách từ K đến đường thẳng (d)
Trong mặt phẳng tọa độ Oxy cho parabol (P) có phương trình y = 1 2 x 2 và hai điểm A, B thuộc (P) có hoành độ lần lượt là x A = − 1 ; x B = 2 .
a) Tìm tọa độ của hai điểm A, B.
b) Viết phương trình đường thẳng (d) đi qua hai điểm A, B.
c) Tính khoảng cách từ O (gốc tọa độ) đến đường thẳng (d).
Bài 2. Cho đường thẳng (d): y = (m – 1)x + m – 2.
b) Viết phương trình đường thẳng (d2) song song với đường thẳng (d1) và thỏa mãn
khoảng cách từ gốc tọa độ O đến đường thẳng (d2) bằng 1.
c) Tìm tọa độ điểm cố định mà đường thẳng (d) luôn đi qua với mọi m. Xác định m để
đường thẳng (d) tạo với tia đối của các tia Ox và Oy một tam giác có diện tích nhỏ nhất
xác định phương trình đường thẳng có tính chất sau:
a. Đường thẳng (d1) đi qua gốc tọa độ và song song với đường thẳng(d): y=2x-1
b Đường thẳng (d2) đi qua gốc tọa độ và vuông góc với đường thẳng (d): y=x+3
c Đường thẳng (d3) song song với (d): y=-3x+5 và cắt trục tung tại điểm có tung độ là 4
d* Đường thẳng (d4) cùng với 2 trục tọa độ thành tam giác vuông cân có diện tích bằng 8 đơn vị diện tích
Bài 2. Cho đường thẳng (d): y = (m – 1)x + m – 2.
a) Vẽ đường thẳng (d1) khi m = 3.
b) Viết phương trình đường thẳng (d2) song song với đường thẳng (d1) và thỏa mãn
khoảng cách từ gốc tọa độ O đến đường thẳng (d2) bằng 1.
c) Tìm tọa độ điểm cố định mà đường thẳng (d) luôn đi qua với mọi m. Xác định m để
đường thẳng (d) tạo với tia đối của các tia Ox và Oy một tam giác có diện tích nhỏ nhất.
Trên mặt phẳng toạ độ Oxy, sao cho điểm A(2;-1). Viết phương trình đường thẳng (d) đi qua A sao cho khoảng cách từ gốc tọa độ O đến đường thẳng (d) lớn nhất.
Thanks