NA

Trong mặt phẳng tọa độ Oxy, cho điểm K(1;1) và đường thẳng (Δ) có phương trình \(y=2x+\sqrt{3}\). Gọi (d) là 1 đường thẳng song song với đường thẳng (Δ) có và cắt trục tung tại điểm có tung độ bằng 1. Hãy tính khoảng cách từ K đến đường thẳng (d)

NM
8 tháng 12 2021 lúc 15:34

Gọi \(\left(d\right):y=ax+b\) là đt của (d)

\(\Leftrightarrow\left\{{}\begin{matrix}a=2;b\ne\sqrt{3}\\b=1\end{matrix}\right.\Leftrightarrow\left(d\right):y=2x+1\Leftrightarrow2x-y+1=0\)

Khoảng cách từ K đến (d) là \(d\left(K;d\right)=\dfrac{6\cdot1-1+1}{\sqrt{1^2+\left(-1\right)^2}}=\dfrac{6}{\sqrt{2}}=3\sqrt{2}\)

Bình luận (0)

Các câu hỏi tương tự
AL
Xem chi tiết
TM
Xem chi tiết
H24
Xem chi tiết
ND
Xem chi tiết
TD
Xem chi tiết
DT
Xem chi tiết
ND
Xem chi tiết
H24
Xem chi tiết
DD
Xem chi tiết