ND

Trong mặt phẳng toạ độ Oxy, cho tam giác ABC có A(-1;2), B(3;4), C(1;-6). Tìm quỹ tích
các điểm M sao cho hai tam giác MAB và MAC có diện tích bằng nhau.
 

NL
14 tháng 3 2022 lúc 9:01

\(\overrightarrow{AB}=\left(4;2\right)=2\left(2;1\right)\Rightarrow AB=2\sqrt{5}\)

Đường thẳng AB nhận (1;-2) là 1 vtpt nên pt có dạng:

\(1\left(x+1\right)-2\left(y-2\right)=0\Leftrightarrow x-2y+5=0\)

\(\overrightarrow{AC}=\left(2;-8\right)=2\left(1;-4\right)\Rightarrow AC=2\sqrt{17}\)

Đường thẳng AC nhận (4;1) là 1 vtpt nên pt có dạng:

\(4\left(x+1\right)+1\left(y-2\right)=0\Leftrightarrow4x+y+2=0\)

Gọi \(M\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}S_{MAB}=\dfrac{1}{2}d\left(M;AB\right).AB\\S_{MAC}=\dfrac{1}{2}d\left(M;AC\right).AC\end{matrix}\right.\)

\(S_{MAB}=S_{MAC}=d\left(M;AB\right).AB=d\left(M;AC\right).AC\)

\(\Leftrightarrow\dfrac{\left|x-2y+5\right|}{\sqrt{1+\left(-2\right)^2}}.2\sqrt{5}=\dfrac{\left|4x+y+2\right|}{\sqrt{4^2+1^2}}.2\sqrt{17}\)

\(\Leftrightarrow\left|x-2y+5\right|=\left|4x+y+2\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}4x+y+2=x-2y+5\\4x+y+2=-x+2y-5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+y-1=0\\5x-y+7=0\end{matrix}\right.\)

Vậy quỹ tích M là 2 đường thẳng có pt: \(\left[{}\begin{matrix}x+y-1=0\\5x-y+7=0\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
HQ
Xem chi tiết
MH
Xem chi tiết
PB
Xem chi tiết
TT
Xem chi tiết
HQ
Xem chi tiết
HQ
Xem chi tiết
VM
Xem chi tiết
ND
Xem chi tiết