DK

Trong mặt phẳng tọa độ Oxy, cho parabol (P):y=x2 . Gọi A, B là hai điểm trên parabol có
hoành độ tương ứng là 1 và 2. Tìm tọa độ hình chiếu vuông góc của gốc tọa độ O lên đường
thẳng AB.
 

NT

Thay x=1 vào (P), ta được:

\(y=1^2=1\)

Thay x=2 vào (P), ta được:

\(y=2^2=4\)

vậy: A(1;1); B(2;4)

Gọi H là tọa độ của hình chiếu vuông góc kẻ từ O xuống AB

O(0;0); H(x;y); A(1;1); B(2;4)

\(\overrightarrow{OH}=\left(x;y\right);\overrightarrow{AB}=\left(1;3\right)\)

Vì OH vuông góc với AB nên \(x\cdot1+y\cdot3=0\)

=>x+3y=0

Ta có: \(\overrightarrow{AH}=\left(x-1;y-1\right);\overrightarrow{AB}=\left(1;3\right)\)

mà A,H,B thẳng hàng

nên \(\dfrac{x-1}{1}=\dfrac{y-1}{3}\)

=>3x-3=y-1

=>3x-y=2(2)

Từ (1) và (2) ta có hệ phương trình:

\(\left\{{}\begin{matrix}3x-y=2\\x+3y=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}9x-3y=6\\x+3y=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}10x=6\\x+3y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{5}\\3y=-x=-\dfrac{3}{5}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{3}{5}\\y=-\dfrac{1}{5}\end{matrix}\right.\)

Vậy: \(H\left(\dfrac{3}{5};-\dfrac{1}{5}\right)\)

Bình luận (0)

Các câu hỏi tương tự
NA
Xem chi tiết
NH
Xem chi tiết
ND
Xem chi tiết
MT
Xem chi tiết
PB
Xem chi tiết
HN
Xem chi tiết
PB
Xem chi tiết
NV
Xem chi tiết
DN
Xem chi tiết