Trong mặt phẳng tọa độ, phép tịnh tiến theo vecto v → ( - 3 ; - 2 ) biến đường tròn có phương trình (C): x 2 + y - 1 2 = 1 thành đường tròn (C’) có phương trình:
A. x - 3 2 + y + 1 2 = 1
B. x + 3 2 + y + 1 2 = 1
C. x + 3 2 + y + 1 2 = 4
D. x - 3 2 + y - 1 2 = 4
Trong mặt phẳng tọa độ Oxy cho vectơ v → = - 1 ; 2 , A 3 ; 5 , B - 1 ; 1 và đường thẳng d có phương trình x – 2 y + 3 = 0 .
a. Tìm tọa độ của các điểm A' , B' theo thứ tự là ảnh của A, B qua phép tịnh tiến theo vecto v →
b. Tìm tọa độ của điểm C sao cho A là ảnh của C qua phép tịnh tiến theo vectơ v →
c. Tìm phương trình của đường thẳng d' là ảnh của d qua phép tịnh tiến theo v .
Trong mặt phẳng tọa độ Oxy, cho đường tròn (C): x - 2 2 + y + 1 2 = 9 Gọi (C’) là ảnh của đường tròn (C) qua việc thực hiện liên tiếp phép vị tự tâm O, tỉ số k= - 1 3 và phép tịnh tiến theo vecto v → = ( 1 ; - 3 ) . Tìm bán kính R’ của đường tròn (C’).
A. 9
B. 3
C. 27
D. 1
Trong mặt phẳng Oxy cho điểm M(1;2) Phép tịnh tiến theo vecto u → = 2 ; - 6 biến điểm M thành điểm M' có tọa độ là
A. (-2;6)
B. (2;5)
C. (2;-6)
D. (4;-2)
Trong mặt phẳng tọa độ Oxy ảnh của đường tròn (C) x + 1 2 + ( y - 3 ) 2 = 4 qua phép tịnh tiến theo vectơ v → =(3;2) là đường tròn có phương trình:
A. x + 2 2 + ( y + 5 ) 2 = 4
B. x - 2 2 + ( y - 5 ) 2 = 4
C. x - 1 2 + ( y + 3 ) 2 = 4
D. x + 4 2 + ( y - 1 ) 2 = 4
Trong mặt phẳng với hệ tọa độ Oxy. Phép tịnh tiến theo vectơ biến đường thẳng Δ: x - y -1 = 0 thành đường thẳng Δ' có phương trình là
A.x - y - 1 = 0 .
B. x + y - 1 = 0 .
C. x - y - 2 = 0 .
D. x + y + 2 = 0 .
Trong mặt phẳng tọa độ Oxy cho vecto v → = 1 ; 2 . Tìm tọa độ của điểm M’ là ảnh của điểm M 3 ; - 1 qua phép tịnh tiến T v → .
trong mặt phẳng tọa độ oxy, phép tịnh tiến theo biến đường thẳng d: 3x-y-7=0 thành đường thẳng 3x-y+13=0. hãy tìm tọa độ vecto u là vecto tịnh tiến, biết rằng cùng phương với .vecto i(1;1)
Trong mặt phẳng Oxy cho đường thẳng 2x - y + 1 = 0. Để phép tịnh tiến theo vecto v → biến đường thẳng d thành chính nó thì v → phải là vecto nào trong các vecto sau?
A. (1;2)
B. (2;-1)
C. (2;1)
D. (0;1)