H24

trong mặt phẳng tọa độ oxy, phép tịnh tiến theo biến đường thẳng d: 3x-y-7=0 thành đường thẳng 3x-y+13=0. hãy tìm tọa độ vecto u là vecto tịnh tiến, biết rằng cùng phương với .vecto i(1;1)

NC
25 tháng 8 2021 lúc 14:41

Do \(\overrightarrow{u}\) cùng phương với \(\overrightarrow{i}=\left(1;1\right)\) nên tồn tại một số thực t sao cho \(\overrightarrow{u}=t.\overrightarrow{i}\) ⇒ \(\overrightarrow{u}=\left(t;t\right)\) 

d : 3x - y - 7 = 0 nên A (2 ; - 1) ∈ d

Sau khi thực hiện phép tịnh tiến thì ta được điểm B trên d; : 3x - y + 13

thỏa mãn \(\overrightarrow{AB}=\overrightarrow{u}=\left(t;t\right)\)

⇒ B (t + 2 ; t - 1)

Do B ∉ d' ⇒ 3(t + 2) - (t - 1) + 13 = 0

⇒ t = - 10

⇒ Vecto tịnh tiến là \(\overrightarrow{u}=\left(-10;-10\right)\)

Bình luận (0)

Các câu hỏi tương tự
ML
Xem chi tiết
PB
Xem chi tiết
HL
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
TN
Xem chi tiết