Ôn tập chương 2: Hàm số bậc nhất

H24

Trong mặt phẳng toạ độ Oxy, cho (d) y=(m+5)x+2m-10. Tìm m để khoảng cách từ O đến d lớn nhất.

DH
10 tháng 7 2021 lúc 15:56

*TH1: m ≠ -5

Gọi M(xM; yM) là điểm cố định mà (d) đi qua với mọi m 

=> xM; yM thoả mãn phương trình: yM = (m + 5)xM + 2m - 10 ∀m

                                                   ⇔ yM = mxM + 5xM + 2m - 10 ∀m

                                                   ⇔ m(xM + 2) + 5xM - yM - 10 = 0 ∀m

                                                   ⇔ \(\left\{{}\begin{matrix}x_M+2=0\\5x_M-y_M-10=0\end{matrix}\right.\)\(\left\{{}\begin{matrix}x_M=-2\\y_M=-20\end{matrix}\right.\)

Vậy M(-2; -20) là điểm cố định mà (d) luôn đi qua với mọi m

=> OM = \(\sqrt{\left(x_O-x_M\right)^2+\left(y_O-y_M\right)^2}\) = \(\sqrt{2^2+20^2}\) = \(2\sqrt{101}\)

Gọi H là chân đường vuông góc hạ từ O xuống (d) => OH ≤ OM (tính chất đường vuông góc và đường xiên)

Vậy với m ≠ -5; khoảng cách lớn nhất từ O đến (d) là \(2\sqrt{101}\)

*TH2: m = -5

Với m = -5 ta có (d): y = 2.(-5) - 10 = -20

=> (d) // Ox và cắt Oy tại điểm có tung độ -20

=> Khoảng cách từ O đến (d) là 20

Ta có: 20 < \(2\sqrt{101}\) => Với m ≠ -5 thì khoảng cách từ O đến (d) là lớn nhất.

Bình luận (0)

Các câu hỏi tương tự
TD
Xem chi tiết
H24
Xem chi tiết
NB
Xem chi tiết
HS
Xem chi tiết
DT
Xem chi tiết
H24
Xem chi tiết
NK
Xem chi tiết
KM
Xem chi tiết
H24
Xem chi tiết