Bài 4. HỆ TRỤC TỌA ĐỘ

H24

trong mặt phẳng tọa độ Oxy cho A(1;3); B(2;7); C(-1;3). tìm tập hợp điiểm M thỏa mãn \(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|=\left|\overrightarrow{MA}-\overrightarrow{MC}\right|\)

HP
27 tháng 10 2020 lúc 18:45

Gọi \(I\left(x_0;y_0\right)\) là điểm thỏa mãn \(\overrightarrow{IA}+\text{​​}\overrightarrow{IB}=\overrightarrow{0}\)

Ta có \(\left\{{}\begin{matrix}1-x_0+2-x_0=0\\3-y_0+7-y_0=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_0=3\\2y_0=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=\frac{3}{2}\\y_0=5\end{matrix}\right.\)

\(\Rightarrow I\left(\frac{3}{2};5\right)\)

Khi đó \(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|=\left|\overrightarrow{MI}+\overrightarrow{IA}+\overrightarrow{MI}+\overrightarrow{IB}\right|=\left|2\overrightarrow{MI}+\overrightarrow{0}\right|=2MI\)

Lại có \(\left|\overrightarrow{MA}-\overrightarrow{MC}\right|=\left|\overrightarrow{CA}\right|=CA=\sqrt{\left(-1-2\right)^2+\left(3-7\right)^2}=5\)

Nên \(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|=\left|\overrightarrow{MA}-\overrightarrow{MC}\right|\)

\(\Leftrightarrow2MI=5\Rightarrow MI=\frac{5}{2}\)

Vậy \(M\in\left(I;\frac{5}{2}\right)\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
XH
Xem chi tiết
XH
Xem chi tiết
LV
Xem chi tiết
H24
Xem chi tiết
VT
Xem chi tiết
PC
Xem chi tiết
TT
Xem chi tiết
H24
Xem chi tiết
TT
Xem chi tiết