TT

Trong mặt phẳng tọa độ Oxy cho A (4;5), B(1;-1), C(4;-4), D(7;-1) (vẽ hình nhé)

a) Viết phương trình đường thẳng AB, CD, DA

b) Tính chu vi tứ giác ABCD 

H24
26 tháng 8 2023 lúc 7:13

a) Để viết phương trình đường thẳng AB, CD, DA, ta có thể sử dụng công thức phương trình đường thẳng đi qua hai điểm.

Phương trình đường thẳng AB: Điểm A(4,5) và B(1,-1) Ta có: Độ dốc của đường thẳng AB: m = (y2 - y1) / (x2 - x1) = (-1 - 5) / (1 - 4) = -2 Phương trình đường thẳng AB: y - y1 = m(x - x1) => y - 5 = -2(x - 4) => y - 5 = -2x + 8 => 2x + y = 13

Phương trình đường thẳng CD: Điểm C(4,-4) và D(7,-1) Ta có: Độ dốc của đường thẳng CD: m = (y2 - y1) / (x2 - x1) = (-1 - (-4)) / (7 - 4) = 1 Phương trình đường thẳng CD: y - y1 = m(x - x1) => y - (-1) = 1(x - 7) => y + 1 = x - 7 => x - y = 8

Phương trình đường thẳng DA: Điểm D(7,-1) và A(4,5) Ta có: Độ dốc của đường thẳng DA: m = (y2 - y1) / (x2 - x1) = (5 - (-1)) / (4 - 7) = -2 Phương trình đường thẳng DA: y - y1 = m(x - x1) => y - (-1) = -2(x - 7) => y + 1 = -2x + 14 => 2x + y = 13

b) Để tính chu vi tứ giác ABCD, ta cần tính độ dài các cạnh của tứ giác.

Độ dài cạnh AB: AB = √[(x2 - x1)^2 + (y2 - y1)^2] = √[(1 - 4)^2 + (-1 - 5)^2] = √[9 + 36] = √45

Độ dài cạnh BC: BC = √[(x2 - x1)^2 + (y2 - y1)^2] = √[(4 - 1)^2 + (-4 - (-1))^2] = √[9 + 9] = √18

Độ dài cạnh CD: CD = √[(x2 - x1)^2 + (y2 - y1)^2] = √[(7 - 4)^2 + (-1 - (-4))^2] = √[9 + 9] = √18

Độ dài cạnh DA: DA = √[(x2 - x1)^2 + (y2 - y1)^2] = √[(7 - 4)^2 + (-1 - 5)^2] = √[9 + 36] = √45

Từ đó, chu vi tứ giác ABCD là: AB + BC + CD + DA = √45 + √18 + √18 + √45.

Bình luận (0)
KL
26 tháng 8 2023 lúc 7:15

loading... a) * Gọi (d): y = ax + b là phương trình đường thẳng AB

Do (d) đi qua A nên:

4a + b = 5

⇔ b = 5 - 4a (1)

Do (d) đi qua B nên:

a + b = -1 (2)

Thay (1) vào (2) ta được:

a + 5 - 4a = -1

⇔ -3a = -6

⇔ a = 2

Thay a = 2 vào (1) ta được:

b = 5 - 4.2 = -3

Vậy (d): y = 2x - 3

* Gọi (d'): y = ax + b là phương trình đường thẳng CD

Do (d') đi qua C nên:

4a + b = -4

⇔ b = -4 - 4a  (3)

Do (d') đi qua D nên:

7a + b = -1  (4)

Thay (3) vào (4) ta được:

7a - 4 - 4a = -1

⇔ 3a = 3

⇔ a = 1

Thay a = 1 vào (3) ta được:

b = -4 - 4.1 = -8

Vậy (d'): y = x - 8

* Gọi (d''): y = ax + b là phương trình đường thẳng DA

Do (d'') di qua D nên:

7a + b = -1

⇔ b = -1 - 7a  (5)

Do (d'') đi qua A nên:

4a + b = 5 (6)

Thay (5) vào (6) ta được:

4a - 1 - 7a = 5

⇔ -3a = 6

⇔ a = -2

Thay a = -2 vào (5) ta được:

b = -1 - 7.(-2) = 13

Vậy (d''): y = -2x + 13

b) Ta có:

AB² = 3² + 6² = 45

⇒ AB = 3√5

BC² = 3² + 3² = 18

⇒ BC = 3√2

CD² = 3² + 5² = 34

⇒ CD = √34

AD² = 3² + 4² = 25

⇒ AD = 5

Chu vi tứ giác ABCD:

3√5 + 3√2 + √34 + 5

Bình luận (0)