\(\overrightarrow{a}\) . \(\overrightarrow{b}\) = ( -3) . 2 + 1.2 = -4
\(\overrightarrow{a}\) . \(\overrightarrow{b}\) = ( -3) . 2 + 1.2 = -4
Nhắc lại định nghĩa tích vô hướng của hai vectơ \(\overrightarrow{a}\) và \(\overrightarrow{b}\). Tích vô hướng này với \(\left|\overrightarrow{a}\right|\) và \(\left|\overrightarrow{b}\right|\) không đổi đạt giá trị lớn nhất và nhỏ nhất khi nào ?
Trong mặt phẳng Oxy, cho tam giác ABC với \(A\left(-5;6\right);B\left(-4;-1\right);C\left(4;3\right)\) :
a) Tính tọa độ trực tâm H của tam giác ABC
b) Tìm điểm M thuộc trục Oy sao cho \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|\) ngắn nhất ?
Trong mặt phẳng tọa độ Oxy cho 3 điểm \(A\left(7;-3\right);B\left(8;4\right);C\left(1;5\right)\) :
a) Tìm tọa độ điểm D thỏa mãn \(\overrightarrow{AB}=\overrightarrow{DC}\)
b) Chứng minh rằng tứ giác ABCD là hình vuông
Cho tam giác ABC có \(\widehat{BAC}=60^0;AB=4;AC=6\)
a) Tính tích vô hướng \(\overrightarrow{AB}.\overrightarrow{AC};\overrightarrow{AB}.\overrightarrow{BC}\), độ dài cạnh BC và bán kính R của đường tròn ngoại tiếp tam giác ABC
b) Lấy các điểm M, N định bởi : \(2\overrightarrow{AM}+3\overrightarrow{MC}=\overrightarrow{0};\overrightarrow{NB}+x\overrightarrow{BC}=\overrightarrow{0};\left(x\ne-1\right)\). Định \(x\) để AN vuông góc với BM ?
Ba điểm A, B, C phân biệt tạo nên vectơ \(\overrightarrow{AB}+\overrightarrow{AC}\) vuông góc với vectơ \(\overrightarrow{AB}+\overrightarrow{CA}\). Vậy tam giác ABC là tam giác gì ?
cho △ABC. tìm tập hợp điểm M thỏa mãn \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|\) bằng \(\dfrac{3}{2}\left|\overrightarrow{MB}+\overrightarrow{MC}\right|\)
Cho tình hình ABCD có AB = 3a; AD = 5a. Góc BAD bằng \(120^0\) :
a) Tìm các tích vô hướng sau : \(\overrightarrow{AB}.\overrightarrow{AD};\overrightarrow{AC}.\overrightarrow{BD}\)
b) Tính độ dài BD và bán kính đường tròn ngoại tiếp tam giác ABC
Cho tam giác ABC thỏa mãn điều kiện \(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=\left|\overrightarrow{AB}-\overrightarrow{AC}\right|\)
Vậy tam giác ABC là tam giác gì ?
Cho hình vuông ABCD có cạnh bằng 3a, tâm O; E là điểm trên cạnh BC và BE =a
a) Tính cạnh OE và bán kính đường tròn ngoại tiếp tam giác OBE
b) Gọi G là trọng tâm tam giác ACD. Tính tích vô hướng : \(\overrightarrow{GA}.\overrightarrow{GC}\)