Ôn tập chương II

NA

cho △ABC. tìm tập hợp điểm M thỏa mãn \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|\) bằng \(\dfrac{3}{2}\left|\overrightarrow{MB}+\overrightarrow{MC}\right|\)

TH
5 tháng 12 2023 lúc 20:09

Gọi G là trọng tâm của tam giác ABC, I là trung điểm BC.

Dễ dàng chứng minh \(\left\{{}\begin{matrix}\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|3\overrightarrow{MG}\right|=3MG\\\dfrac{3}{2}\left|\overrightarrow{MB}+\overrightarrow{MC}\right|=\dfrac{3}{2}\left|2\overrightarrow{MI}\right|=3MI\end{matrix}\right.\)

Kết hợp điều kiện đề bài, ta có \(MG=MI\). Do đó M nằm trên đường trung trực của GI (cố định).

Vậy tập hợp điểm M thoả điều kiện đề bài là trung trực của đoạn GI.

Bình luận (0)

Các câu hỏi tương tự
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
AH
Xem chi tiết
SK
Xem chi tiết
KM
Xem chi tiết
SK
Xem chi tiết