NT

trong mặt phẳng oxy , cho tam giác ABC có A thuộc đường thẳng d: x-4y-2=0. đường thẳng BC song song với d, phương trình đường cao BH: x+yi+3=0. Trung điểm AC làM1,1;. viết phương trình các cạnhcủa tam giác ABC

NL
21 tháng 3 2021 lúc 0:33

AC vuông góc BH nên nhận (1;-1) là 1 vtpt

Phương trình AC:

\(1\left(x-1\right)-1\left(y-1\right)=0\Leftrightarrow x-y=0\)

A thuộc AC và d nên tọa độ A là nghiệm:

\(\left\{{}\begin{matrix}x-y=0\\x-4y-2=0\end{matrix}\right.\) \(\Rightarrow A\left(-\dfrac{2}{3};-\dfrac{2}{3}\right)\)

M là trung điểm AC \(\Rightarrow\left\{{}\begin{matrix}x_C=2x_M-x_A=\dfrac{8}{3}\\y_C=2y_M-y_A=\dfrac{8}{3}\end{matrix}\right.\) \(\Rightarrow C\left(\dfrac{8}{3};\dfrac{8}{3}\right)\)

BC song song d nên nhận (1;-4) là 1 vtpt

Phương trình BC:

\(1\left(x-\dfrac{8}{3}\right)-4\left(y-\dfrac{8}{3}\right)=0\Leftrightarrow x-4y+8=0\)

B là giao điểm của BC và BH nên tọa độ thỏa mãn:

\(\left\{{}\begin{matrix}x-4y+8=0\\x+y+3=0\end{matrix}\right.\) \(\Rightarrow B\left(-4;1\right)\)

\(\Rightarrow\overrightarrow{AB}=...\Rightarrow\) phương trình đường thẳng AB

Bình luận (0)