H24
Trong mặt phẳng oxy cho A(1;-3) B(0;5) C(4;3) a) chứng minh 3 điểm A,B,C là 3 đỉnh của tam giác b) Tìm tọa độ trung điểm I của đoạn thẳng AC, tọa độ trọng tâm của tam giác ABC c) Tìm tọa độ O sao cho tam giác ABCD là hình bình hành
NL
23 tháng 12 2022 lúc 19:05

a.

\(\left\{{}\begin{matrix}\overrightarrow{AB}=\left(-1;8\right)\\\overrightarrow{AC}=\left(3;6\right)\end{matrix}\right.\) mà \(\dfrac{-1}{3}\ne\dfrac{8}{6}\Rightarrow\overrightarrow{AB}\) và \(\overrightarrow{AC}\) không cùng phương hay A,B,C không thẳng hàng

\(\Rightarrow A,B,C\) là 3 đỉnh của 1 tam giác

b.

Theo công thức trung điểm: \(\left\{{}\begin{matrix}x_I=\dfrac{x_A+x_C}{2}=\dfrac{1+4}{2}=\dfrac{5}{2}\\y_I=\dfrac{y_A+y_C}{2}=\dfrac{-3+3}{2}=0\end{matrix}\right.\)

\(\Rightarrow C\left(\dfrac{5}{2};0\right)\)

Gọi G là trọng tâm tam giác, theo công thức trọng tâm: 

\(\left\{{}\begin{matrix}x_G=\dfrac{x_A+x_B+x_C}{3}=\dfrac{1+0+4}{3}=\dfrac{5}{3}\\y_G=\dfrac{y_A+y_B+y_C}{3}=\dfrac{-3+5+3}{3}=\dfrac{5}{3}\\\end{matrix}\right.\) \(\Rightarrow G\left(\dfrac{5}{3};\dfrac{5}{3}\right)\)

c.

Gọi \(D\left(x;y\right)\Rightarrow\overrightarrow{DC}=\left(4-x;3-y\right)\)

ABCD là hình bình hành khi \(\overrightarrow{AB}=\overrightarrow{DC}\)

\(\Rightarrow\left\{{}\begin{matrix}4-x=-1\\3-y=8\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=5\\y=-5\end{matrix}\right.\)

\(\Rightarrow D\left(5;-5\right)\)

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
MM
Xem chi tiết
H24
Xem chi tiết
MT
Xem chi tiết
HN
Xem chi tiết
TT
Xem chi tiết
H24
Xem chi tiết
TT
Xem chi tiết
BC
Xem chi tiết