Trong mặt phẳng Oxy cho hai đường thẳng có phương trình \(y=-\frac{3}{4}x+2\frac{1}{2}\) (1) và \(y=\frac{4}{5}x+\frac{7}{2}\) (2)
a) Vẽ đồ thị của hai hàm số trên.
b) Tìm tọa độ giao điểm \(A\left(x_A;y_A\right)\) của hai đồ thị trên (Để kết quả dưới dạng phân số)
c) Tính các góc trong tam giác ABC. Trong đó B, C thứ tự là giao điểm của hàm số (1) và hàm số (2) với trục hoành( Lấy nguyên kết quả trên máy).
(Đây là đề Casio nha)
Trong mặt phẳng Oxy cho hai đường thẳng có phương trình \(y=-\frac{3}{4}x+2\frac{1}{2}\) (1) và \(y=\frac{4}{5}x+\frac{7}{2}\) (2)
a) Vẽ đồ thị của hai hàm số trên.
b) Tìm tọa độ giao điểm \(A\left(x_A;y_A\right)\) của hai đồ thị trên (Để kết quả dưới dạng phân số)
c) Tính các góc trong tam giác ABC. Trong đó B, C thứ tự là giao điểm của hàm số (1) và hàm số (2) với trục hoành( Lấy nguyên kết quả trên máy).
(Đây là đề Casio nha)
Cho tứ giác ABCD nội tiếp (O). Trong đó các tia AB và DC cắt nhau tại E, AD và BC cắt nhau tại F.Đường tròn (O') ngoại tiếp tg AEF cắt đg tròn (O) tại điểm thứ hai H. Gọi I là tđ của EF. Cm H,C,I thẳng hàng.
Hai vòi nước cùng chảy vào một bể không có nước. Sau 1 giờ 30 phút thì đầy bể. Nếu mở vòi thứ nhất trong 15 phút rồi khóa lại và mở vòi thứ hai chảy tiếp trong 20 phút thì được \(\frac{1}{5}\) bể. Hỏi nếu mỗi vòi chảy riêng thì sau bao lâu thì đầy bể? (Tính làm tròn kết quả đến phút)
cho tam giác nhọn ABC (AB<AC)nội tiếp đường tròn (O;R).Vẽ đường kính AD vẽ AE\(\perp\)BC tại E , gọi K là giao điểm của AE với đường tròn (O;R)(K\(\ne\)A).Chứng minh rằng:
1/ AE.AD=AB.AC,S\(_{ABC}\)=\(\frac{AB.AC.BC}{4R}\)
2/ Tứ giác BKDC là hình thang cân
Cho đường tròn tâm O đường kính AB và một điểm C trên đường tròn. Từ O kẻ một đường thẳng song song với dây AC , đường thẳng này ćt tiếp tuyến tại B của đường tròn tại điểm D.
a) Chứng minh OD là phân giác của góc BOC
b) Chứng minh CD là tiếp tuyến của đường tròn
Cho tam giác ABC vuông tại A, đường cao AH. trên AB lấy điểm E. Kẻ AD và BK cùng vuông góc với HE(D,K thuộc HE).Chứng minh HD=KB.cotg HAB
Cho (O) bán kính R và AB là đg kính cố định của (O). d là tiếp tuyến của (O) tại B. MN là đg kính thay đổi của (O) sao cho MN ko vuông góc vs AB và ko trùng vs AB. Các đg thẳng AM và AN cắt d tại C và D. Gọi I là trung điểm của CD, H là giao của AI và MN khi MN thay đổi.C/m:
a, AM.AC ko đổi.
b, Tứ giác CMND nội tiếp.
c, H luôn thuộc một đg tròn cố định.
d, Tâm J của đg tròn ngoại tiếp tg HBI luôn thuộc đg thẳng cố định.
(Câu a và b mk đã lm đc, nhưng có thể sẽ là gợi ý cho hai câu kia nên mk vẫn đăng. Giúp mk nhé, mai mk đi học zùi.Cảm ơn )